346 resultados para MEIOTIC CHROMOSOMES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

SummarySimultaneous detection of aneuploidies for chromosomes 4, 6,10 and 17 by automated four color l-FISH in high hyperdiploid acute lymphoblastic leukemia: diagnostic assessment, clonal heterogeneity and chromosomal instability in adultsAnna Talamo BlandinService de Génétique Médicale, Unité de Cytogénétique du Cancer, CHUVAcute lymphoblastic leukemia (ALL) is a malignant hemopathy characterized by the accumulation of the immature lymphoid cells in the bone marrow and, most often, in the peripheral blood. ALL is a heterogeneous disease with distinct biological and prognostic entities. At diagnosis, cytogenetic and molecular findings constitute important and independent prognostic factors. High hyperdiploidy with 51-67 chromosomes (HeH), one of the largest cytogenetic subsets of ALL, in childhood particularly, is generally associated with a relatively favorable outcome. Chromosome gain is nonrandom, extracopies of some chromosome occurring more frequently than those of others. Concurrent presence of trisomy for chromosomes 4, 10 and 17 confers an especially good prognosis. The first aim of our work was to develop an automated four color interphase fluorescence in situ hybridization (l-FISH) methodology and to assess its ability to detect concurrent aneuploidies 4, 6, 10 and 17 in 10 ALL patients. Various combinations of aneuploidies were identified. All clones detected by conventional cytogenetics were also observed by l-FISH. However, in all patients, l-FISH revealed numerous additional abnormal clones, leading to a high level of clonal heterogeneity. Our second aim has been to investigate the nature and origin of this clonal heterogeneity and to test for the presence of chromosome instability (CIN) in HeH ALL at initial presentation. Ten HeH ALL and 10 non-HeH ALL patients were analysed by four colour l-FISH and numerical CIN values were determined for all four chromosomes together and for each chromosome and patient group, an original approach in ALL. CIN values in HeH ALL proved to be much higher than#iose in non-HeH ALL, suggesting that numerical CIN may be at the origin of the high level of clonal heterogeneity revealed by l-FISH. Our third aim has been to study the evolution of these cytogenetic features during the course of the disease in 10 HeH ALL patients. Clonal heterogeneity was also observed again during disease progression, particularly at relapse. Clones detected at initial presentation generally reappeared in relapse, in most cases with newly generated ones. A significant correlation between the number of abnormal clones and CIN suggested that the higher the instability, the larger the number of abnormal clones. Whereas clonal heterogeneity and its evolution most probably result from underlying chromosome instability, operating processes remain conjectural.RésuméLa leucémie lymphoblastique aiguë (LLA) est une hémopathie maligne qui résulte de l'accumulationde cellules lymphoïdes immatures dans la moelle osseuse, et, le plus souvent, dans le sangpériphérique également. La LLA est une affection hétérogène au sein de laquelle se distinguentplusieurs entités biologiques et pronostiques. Les données cytogénétiques et moléculaires font partieintégrante du diagnostic et jouent un rôle essentiel dans l'évaluation du pronostic. L'hyperdiploïdieélevée à 51-­67 chromosomes (HeH), relativement fréquente, en particulier chez l'enfant, s'associe àun pronostic favorable. Le gain de chromosomes ne relève pas du hasard, certains chromosomesétant plus fréquemment impliqués que d'autres. La présence simultanée des trisomies 4, 6, et 17s'associe à un pronostic particulièrement bon. Le premier but du travail a été de développer uneméthode d'analyse automatique par hybridation in situ fluorescente interphasique (I-­FISH) à 4couleurs et de tester sa capacité à identifier la présence simultanée d'aneuploïdies 4, 6, 10 et 17 dans10 cas de LLA. Différentes combinaisons d'aneuploïdies ont été identifiées. Tous les clones détectéspar cytogénétique conventionnelle l'ont été par I-­FISH. Or, chez tous les patients, l'I-­FISH a révélé denombreux clones anormaux additionnels générant un degré élevé d'hétérogénéité clonale. Notredeuxième but a été d'investiguer la nature et l'origine de cette hétérogénéité et de tester la présenced'instabilité chromosomique (CIN) chez les patients avec une LLA HeH en presentation initiale. DixLLA HeH et 10 LLA non-­HeH ont été analysées par I-­FISH et les valeurs de CIN numérique ont étédéterminées pour les 4 chromosomes ensemble et pour chaque chromosome et groupe de patients,approche originale dans la LLA. Ces valeurs étant beaucoup plus élevées dans la LLA HeH que dansla LLA non-­HeH, elles favorisent l'hypothèse selon laquelle la CIN serait à l'origine de l'hétérogénéitéclonale révélée par I-­FISH. Le troisième but de notre travail a été d'étudier l'évolution de cescaractéristiques cytogénétiques au cours de la maladie dans 10 cas de LLA HeH. L'hétérogénéitéclonale a été retrouvée lors de la progression de la maladie, en particulier en rechute, où les clonesanormaux détectés en présentation initiale réapparaissent, généralement accompagnés de clonesnouveaux. La corrélation existant entre nombre de clones anormaux et valeurs de CIN suggère queplus l'instabilité est élevée, plus le nombre de clones anormaux est grand. Bien que l'hétérogénéitéclonale et son évolution résultent très probablement de l'instabilité chromosomique, les processus àl'oeuvre ne sont pas entièrement élucidés.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated sex-specific recombination rates in Hyla arborea, a species with nascent sex chromosomes and male heterogamety. Twenty microsatellites were clustered into six linkage groups, all showing suppressed or very low recombination in males. Seven markers were sex linked, none of them showing any sign of recombination in males (r=0.00 versus 0.43 on average in females). This opposes classical models of sex chromosome evolution, which envision an initially small differential segment that progressively expands as structural changes accumulate on the Y chromosome. For autosomes, maps were more than 14 times longer in females than in males, which seems the highest ratio documented so far in vertebrates. These results support the pleiotropic model of Haldane and Huxley, according to which recombination is reduced in the heterogametic sex by general modifiers that affect recombination on the whole genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The position of a gene in the genome may have important consequences for its function. Therefore, when a new duplicate gene arises, its location may be critical in determining its fate. Our recent work in humans, mouse, and Drosophila provided a test by studying the patterns of duplication in sex chromosome evolution. We revealed a bias in the generation and recruitment of new gene copies involving the X chromosome that has been shaped largely by selection for male germline functions. The gene movement patterns we observed reflect an ongoing process as some of the new genes are very young while others were present before the divergence of humans and mouse. This suggests a continuing redistribution of male-related genes to achieve a more efficient allocation of male functions. This notion should be further tested in organisms employing other sex determination systems or in organisms differing in germline sex chromosome inactivation. It is likely that the selective forces that were detected in these studies are also acting on other types of duplicate genes. As a result, future work elucidating sex chromosome differentiation by other mutational mechanisms will shed light on this important process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RÉSUMÉ : Le sexe des individus peut être déterminé par l'environnement ou la génétique. Lorsque la détermination du sexe est génétique, il y a dans le génome, la présence de chromosomes spécifiques qui détermineront le sexe. Dans cette thèse, j'ai étudié l'évolution des chromosomes sexuels et dans quel contexte des marqueurs sur ces chromosomes peuvent être utilisés. Pour explorer la formation du chromosome Y, nous avons étudié les caractéristiques des chromosomes sexuels chez la rainette verte, Hyla arborea. Dans un premier temps, nous avons utilisé un marqueur situé sur les chromosomes sexuels X et Y chez plusieurs espèces appartenant au groupe de la rainette verte. Cela nous a permis de révéler chez toutes ces espèces une hétérogamétie mâle. Dans un deuxième temps, nous avons tiré profit de deux autres marqueurs situés sur les chromosomes sexuels pour montrer que la recombinaison est supprimée chez les mâles mais pas chez les femelles. Pour expliquer la réduction de la variabilité sur le chromosome Y, il n'est pas nécessaire d'invoquer le balayage sélectif ou la sélection d'arrière-plan : le nombre de copies plus petit du chromosome Y dans le génome et l'absence de recombinaison suffisent à l'expliquer. Nous avons également analysé plus en détail la suppression de la recombinaison chez les mâles de H. arborea. Les modèles classiques de l'évolution des chromosomes sexuels supposent que la taille de la région non-recombinante augmente progressivement pendant l'évolution du chromosome Y, due à l'accumulation de changements structuraux. Dans cette étude, nous montrons un modèle différent, à savoir que la recombinaison est supprimée ou diminuée non seulement sur les chromosomes sexuels mais aussi sur les autosomes chez les mâles, dû à l'action de modificateurs généraux. En utilisant des marqueurs localisés sur le chromosome Y, ainsi que sur l'ADN mitochondrial et le chromosome X, nous avons étudié l'histoire évolutive de la musaraigne musette, Crocidura russula. Cette étude illustre que les analyses génétiques avec plusieurs types de marqueurs génétiques peuvent faciliter l'interprétation de l'histoire évolutive des espèces, mais que l'utilisation des marqueurs sur les chromosomes X et Y pour des études phylogéographiques est limitée par le peu de polymorphisme observé sur ces deux types de marqueurs. Le même jeu de données combiné avec des simulations a été employé pour comprendre les facteurs responsables de la faible variabilité sur le chromosome Y qui peut être expliqué, dans notre étude, par la démographie et les traits d'histoire de vie de C. russula. SUMMARY The sex of an individual is determined either by its environment or its genetics. Genetic sex determination relies on the presence of specific chromosomes that will determine the sex of their bearer. In this thesis, I studied the evolution of the sex chromosomes and the context in which markers on this type of chromosomes can be used. To explore the evolution of a Y chromosome, we studied the nascent sex chromosomes in the European tree frog Hyla arborea. First; we amplified a sex specific marker in several related species of European tree frog and found a homogeneous pattern of male heterogamety. Secondly, we used two additional sex-specific markers to show that recombination is suppressed in males but not in females. There is, therefore, no need to invoke background selection or selective sweeps to explain the reduced genetic variability on the Y chromosome, because the lower number of copies of the Y chromosomes per breeding pair and the absence of recombination are sufficient. To further analyze the suppression of recombination in male European. tree frogs, we constructed a microsatellite linkage map for this species. Classical models of sex-chromosome evolution assume that the non-recombining region expands progressively during the long-term evolution of the Y chromosome, owing to the accumulation of structural changes. Here we show a strikingly different pattern: recombination is suppressed or depressed both on sex chromosomes and autosomes in the heterogametic sex, presumably due to the action of general modifiers. We investigated the evolutionary history of the greater white-toothed shrew, Crocidura russula, using markers on both sex chromosomes and mtDNA. This study illustrates that multilocus genetic analyses facilitates the interpretation of a species' evolutionary history. It also demonstrates that phylogeographic inferences from X and Y chromosomal markers are restricted by the low levels of observed polymorphism. Combining this genetic study with simulations, we determined that the demography and the life-history traits of this species can alone be responsible for the low Y diversity. In conclusion, this thesis shows that sex chromosomes, in combination with autosomes or mtDNA, are necessary to understand the evolution of sex chromosomes and to precisely infer the population history of a species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparative genomic studies are revealing that, in sharp contrast with the strong stability found in birds and mammals, sex determination mechanisms are surprisingly labile in cold-blooded vertebrates, with frequent transitions between different pairs of sex chromosomes. It was recently suggested that, in context of this high turnover, some chromosome pairs might be more likely than others to be co-opted as sex chromosomes. Empirical support, however, is still very limited. Here we show that sex-linked markers from three highly divergent groups of anurans map to Xenopus tropicalis scaffold 1, a large part of which is homologous to the avian sex chromosome. Accordingly, the bird sex determination gene DMRT1, known to play a key role in sex differentiation across many animal lineages, is sex linked in all three groups. Our data provide strong support for the idea that some chromosome pairs are more likely than others to be co-opted as sex chromosomes because they harbor key genes from the sex determination pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-chromosome inactivation (XCI) is a dosage compensation mechanism that silences the majority of genes on one X chromosome in each female cell. To characterize epigenetic changes that accompany this process, we measured DNA methylation levels in 45,X patients carrying a single active X chromosome (X(a)), and in normal females, who carry one X(a) and one inactive X (X(i)). Methylated DNA was immunoprecipitated and hybridized to high-density oligonucleotide arrays covering the X chromosome, generating epigenetic profiles of active and inactive X chromosomes. We observed that XCI is accompanied by changes in DNA methylation specifically at CpG islands (CGIs). While the majority of CGIs show increased methylation levels on the X(i), XCI actually results in significant reductions in methylation at 7% of CGIs. Both intra- and inter-genic CGIs undergo epigenetic modification, with the biggest increase in methylation occurring at the promoters of genes silenced by XCI. In contrast, genes escaping XCI generally have low levels of promoter methylation, while genes that show inter-individual variation in silencing show intermediate increases in methylation. Thus, promoter methylation and susceptibility to XCI are correlated. We also observed a global correlation between CGI methylation and the evolutionary age of X-chromosome strata, and that genes escaping XCI show increased methylation within gene bodies. We used our epigenetic map to predict 26 novel genes escaping XCI, and searched for parent-of-origin-specific methylation differences, but found no evidence to support imprinting on the human X chromosome. Our study provides a detailed analysis of the epigenetic profile of active and inactive X chromosomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contrasting with the situation found in birds and mammals, sex chromosomes are generally homomorphic in poikilothermic vertebrates. This homomorphy was recently shown to result from occasional X-Y recombinations (not from turnovers) in several European species of tree frogs (Hyla arborea, H. intermedia and H. molleri). Because of recombination, however, alleles at sex-linked loci were rarely diagnostic at the population level; support for sex linkage had to rely on multilocus associations, combined with occasional sex differences in allelic frequencies. Here, we use direct evidence, obtained from anatomical and histological analyses of offspring with known pedigrees, to show that the Eastern tree frog (H. orientalis) shares the same pair of sex chromosomes, with identical patterns of male heterogamety and complete absence of X-Y recombination in males. Conservation of an ancestral pair of sex chromosomes, regularly rejuvenated via occasional X-Y recombination, seems thus a widespread pattern among Hyla species. Sibship analyses also identified discrepancies between genotypic and phenotypic sex among offspring, associated with abnormal gonadal development, suggesting a role for sexually antagonistic genes on the sex chromosomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To control introduced exotic species that have predominantly genetic, but environmentally reversible, sex determination (e.g. many species of fish), Gutierrez and Teem recently modeled the use of carriers of Trojan Y chromosomes--individuals who are phenotypically sex reversed from their genotype. Repeated introduction of YY females into wild populations should produce extreme male-biased sex ratios and eventual elimination of XX females, thus leading to population extinction. Analogous dynamics are expected in systems in which sex determination is influenced by one or a few major genes on autosomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractIn addition to genetic changes affecting the function of gene products, changes in gene expression have been suggested to underlie many or even most of the phenotypic differences among mammals. However, detailed gene expression comparisons were, until recently, restricted to closely related species, owing to technological limitations. Thus, we took advantage of the latest technologies (RNA-Seq) to generate extensive qualitative and quantitative transcriptome data for a unique collection of somatic and germline tissues from representatives of all major mammalian lineages (placental mammals, marsupials and monotremes) and birds, the evolutionary outgroup.In the first major project of my thesis, we performed global comparative analyses of gene expression levels based on these data. Our analyses provided fundamental insights into the dynamics of transcriptome change during mammalian evolution (e.g., the rate of expression change across species, tissues and chromosomes) and allowed the exploration of the functional relevance and phenotypic implications of transcription changes at a genome-wide scale (e.g., we identified numerous potentially selectively driven expression switches).In a second project of my thesis, which was also based on the unique transcriptome data generated in the context of the first project we focused on the evolution of alternative splicing in mammals. Alternative splicing contributes to transcriptome complexity by generating several transcript isoforms from a single gene, which can, thus, perform various functions. To complete the global comparative analysis of gene expression changes, we explored patterns of alternative splicing evolution. This work uncovered several general and unexpected patterns of alternative splicing evolution (e.g., we found that alternative splicing evolves extremely rapidly) as well as a large number of conserved alternative isoforms that may be crucial for the functioning of mammalian organs.Finally, the third and final project of my PhD consisted in analyzing in detail the unique functional and evolutionary properties of the testis by exploring the extent of its transcriptome complexity. This organ was previously shown to evolve rapidly both at the phenotypic and molecular level, apparently because of the specific pressures that act on this organ and are associated with its reproductive function. Moreover, my analyses of the amniote tissue transcriptome data described above, revealed strikingly widespread transcriptional activity of both functional and nonfunctional genomic elements in the testis compared to the other organs. To elucidate the cellular source and mechanisms underlying this promiscuous transcription in the testis, we generated deep coverage RNA-Seq data for all major testis cell types as well as epigenetic data (DNA and histone methylation) using the mouse as model system. The integration of these complete dataset revealed that meiotic and especially post-meiotic germ cells are the major contributors to the widespread functional and nonfunctional transcriptome complexity of the testis, and that this "promiscuous" spermatogenic transcription is resulting, at least partially, from an overall transcriptionally permissive chromatin state. We hypothesize that this particular open state of the chromatin results from the extensive chromatin remodeling that occurs during spermatogenesis which ultimately leads to the replacement of histones by protamines in the mature spermatozoa. Our results have important functional and evolutionary implications (e.g., regarding new gene birth and testicular gene expression evolution).Generally, these three large-scale projects of my thesis provide complete and massive datasets that constitute valuables resources for further functional and evolutionary analyses of mammalian genomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The banding pattern (G-, C-, AgNOR-staining) was described in karyotypes of Apodemus alpicola Heinrich, 1952 and A. microps Kratochvil et Rosicky, 1952 collected from the Alps and central Europe, Distinct differences between the two species were revealed in the distribution of C-heterochromatic regions in autosomes and the sex chromosomes, and the distribution of nucleolar organizer regions (NORs). Extensive variation in the distribution pattern of C-heterochromatin and NORs obviously exists among the wood mice of the subgenus Sylvaemus, and individual species can be distinguished according to a specific variation pattern. However, it seems premature to designate individual karyotypic forms as separate species, because the extent of overall geographical interpopulation variation is still not sufficiently known.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the structure of interphase chromosomes is essential to elucidate regulatory mechanisms of gene expression. During recent years, high-throughput DNA sequencing expanded the power of chromosome conformation capture (3C) methods that provide information about reciprocal spatial proximity of chromosomal loci. Since 2012, it is known that entire chromatin in interphase chromosomes is organized into regions with strongly increased frequency of internal contacts. These regions, with the average size of ∼1 Mb, were named topological domains. More recent studies demonstrated presence of unconstrained supercoiling in interphase chromosomes. Using Brownian dynamics simulations, we show here that by including supercoiling into models of topological domains one can reproduce and thus provide possible explanations of several experimentally observed characteristics of interphase chromosomes, such as their complex contact maps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sex chromosomes are expected to evolve suppressed recombination, which leads to degeneration of the Y and heteromorphism between the X and Y. Some sex chromosomes remain homomorphic, however, and the factors that prevent degeneration of the Y in these cases are not well understood. The homomorphic sex chromosomes of the European tree frogs (Hyla spp.) present an interesting paradox. Recombination in males has never been observed in crossing experiments, but molecular data are suggestive of occasional recombination between the X and Y. The hypothesis that these sex chromosomes recombine has not been tested statistically, however, nor has the X-Y recombination rate been estimated. Here, we use approximate Bayesian computation coupled with coalescent simulations of sex chromosomes to quantify X-Y recombination rate from existent data. We find that microsatellite data from H. arborea, H. intermedia and H. molleri support a recombination rate between X and Y that is significantly different from zero. We estimate that rate to be approximately 10(5) times smaller than that between X chromosomes. Our findings support the notion that very low recombination rate may be sufficient to maintain homomorphism in sex chromosomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meiosis in triploids faces the seemingly insuperable difficulty of dividing an odd number of chromosome sets by two. Triploid vertebrates usually circumvent this problem through either asexuality or some forms of hybridogenesis, including meiotic hybridogenesis that involve a reproductive community of different ploidy levels and genome composition. Batura toads (Bufo baturae; 3n = 33 chromosomes), however, present an all-triploid sexual reproduction. This hybrid species has two genome copies carrying a nucleolus-organizing region (NOR+) on chromosome 6, and a third copy without it (NOR-). Males only produce haploid NOR+ sperm, while ova are diploid, containing one NOR+ and one NOR- set. Here, we conduct sibship analyses with co-dominant microsatellite markers so as (i) to confirm the purely clonal and maternal transmission of the NOR- set, and (ii) to demonstrate Mendelian segregation and recombination of the NOR+ sets in both sexes. This new reproductive mode in vertebrates ('pre-equalizing hybrid meiosis') offers an ideal opportunity to study the evolution of non-recombining genomes. Elucidating the mechanisms that allow simultaneous transmission of two genomes, one of Mendelian, the other of clonal inheritance, might shed light on the general processes that regulate meiosis in vertebrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Spermatogenesis is a complex biological process that requires a highly specialized control of gene expression. In the past decade, small non-coding RNAs have emerged as critical regulators of gene expression both at the transcriptional and post-transcriptional level. DICER1, an RNAse III endonuclease, is essential for the biogenesis of several classes of small RNAs, including microRNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs), but is also critical for the degradation of toxic transposable elements. In this study, we investigated to which extent DICER1 is required for germ cell development and the progress of spermatogenesis in mice.Principal Findings: We show that the selective ablation of Dicer1 at the early onset of male germ cell development leads to infertility, due to multiple cumulative defects at the meiotic and post-meiotic stages culminating with the absence of functional spermatozoa. Alterations were observed in the first spermatogenic wave and include delayed progression of spermatocytes to prophase I and increased apoptosis, resulting in a reduced number of round spermatids. The transition from round to mature spermatozoa was also severely affected, since the few spermatozoa formed in mutant animals were immobile and misshapen, exhibiting morphological defects of the head and flagellum. We also found evidence that the expression of transposable elements of the SINE family is up-regulated in Dicer1-depleted spermatocytes.Conclusions/Significance: Our findings indicate that DICER1 is dispensable for spermatogonial stem cell renewal and mitotic proliferation, but is required for germ cell differentiation through the meiotic and haploid phases of spermatogenesis.