51 resultados para Luminescence Resonance Energy Transfer
Resumo:
The ability of pollutants to affect human health is a major concern, justified by the wide demonstration that reproductive functions are altered by endocrine disrupting chemicals. The definition of endocrine disruption is today extended to broader endocrine regulations, and includes activation of metabolic sensors, such as the peroxisome proliferator-activated receptors (PPARs). Toxicology approaches have demonstrated that phthalate plasticizers can directly influence PPAR activity. What is now missing is a detailed molecular understanding of the fundamental basis of endocrine disrupting chemical interference with PPAR signaling. We thus performed structural and functional analyses that demonstrate how monoethyl-hexyl-phthalate (MEHP) directly activates PPARgamma and promotes adipogenesis, albeit to a lower extent than the full agonist rosiglitazone. Importantly, we demonstrate that MEHP induces a selective activation of different PPARgamma target genes. Chromatin immunoprecipitation and fluorescence microscopy in living cells reveal that this selective activity correlates with the recruitment of a specific subset of PPARgamma coregulators that includes Med1 and PGC-1alpha, but not p300 and SRC-1. These results highlight some key mechanisms in metabolic disruption but are also instrumental in the context of selective PPAR modulation, a promising field for new therapeutic development based on PPAR modulation.
Resumo:
Purpose:NR2E3 (PNR) is an orphan nuclear receptor essential for proper photoreceptor determination and differentiation. In humans, mutations in NR2E3 have been associated with the recessively inherited enhanced short wavelength sensitive (S-) cone syndrome (ESCS) and, more recently, with autosomal dominant retinitis pigmentosa (adRP). NR2E3 acts in concert with the transcription factors Crx and Nrl to repress cone-specific genes and activate rod-specific genes. NR2E3 and Crx have been shown to physically interact by their DNA-binding domain (DBD), which may also be implicated in the dimerization process of the nuclear receptor. However, neither NR2E3 homodimerization nor NR2E3/Crx complex formation has been investigated in detail. Methods:In this present work, we analyzed the dimerization of the NR2E3 protein and its interaction with Crx by bioluminescence resonance energy transfer (BRET2) which utilizes Renilla luciferase (hRluc) protein and its substrate DeepBlueC as an energy donor and a mutant green fluorescent protein (GFP2) as the acceptor. We investigated, on whole intact cells, the role of NR2E3 DBD-mutations in dimerization and association with Crx. Results:We clearly showed that NR2E3 formed homodimers in HEK-293T cells. Moreover, all causative NR2E3 mutations present in the DBD of the protein showed an alteration in dimerization, except for the R76Q and the R104W mutants. Interestingly, the adRP-linked G56R mutant was the only DBD-NR2E3 mutant that showed a correct interaction with Crx. Finally, we observed a decrease in rhodospin gene transactivation for all DBD-NR2E3 mutants tested and no potentiation for the adRP-linked G56R mutant. In addition, the p.G56R mutant enhanced the transrepression of M-opsin promoter, while all other DBD-NR2E3 mutants did not repress M-opsin transactivation. Conclusions:A defect, either in the dimer formation or in the interaction of NR2E3 with Crx, leads to abnormal transcriptional activity on rhodopsin and M-opsin promoter and to an atypical retinal development; while the titration of Crx by p.G56R-NR2E3 leads to low levels of rhodopsin and M-opsin expression and may be responsible for the strong adRP phenotype.
Resumo:
Fluorescence resonance energy transfer (FRET) allows the user to investigate interactions between fluorescent partners. One crucial issue when calculating sensitized emission FRET is the correction for spectral bleed-throughs (SBTs), which requires to calculate the ratios between the intensities in the FRET and in the donor or acceptor settings, when only the donor or acceptor are present. Theoretically, SBT ratios should be constant. However, experimentally, these ratios can vary as a function of fluorophore intensity, and assuming constant values may hinder precise FRET calculation. One possible cause for such a variation is the use of a microscope set-up with different photomultipliers for the donor and FRET channels, a set-up allowing higher speed acquisitions on very dynamic fluorescent molecules in living cells. Herein, we show that the bias introduced by the differential response of the two PMTs can be circumvented by a simple modeling of the SBT ratios as a function of fluorophore intensity. Another important issue when performing FRET is the localization of FRET within the cell or a population of cells. We hence developed a freely available ImageJ plug-in, called PixFRET, that allows a simple and rapid determination of SBT parameters and the display of normalized FRET images. The usefulness of this modeling and of the plug-in are exemplified by the study of FRET in a system where two interacting nuclear receptors labeled with ECFP and EYFP are coexpressed in living cells.
Resumo:
Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. It induces a specific membrane rearrangement, designated membranous web, that serves as a scaffold for the HCV replication complex. However, the mechanisms underlying membranous web formation are poorly understood. Based on fluorescence resonance energy transfer (FRET) and confirmatory coimmunoprecipitation analyses, we provide evidence for an oligomerization of NS4B in the membrane environment of intact cells. Several conserved determinants were found to be involved in NS4B oligomerization, through homotypic and heterotypic interactions. N-terminal amphipathic ?-helix AH2, comprising amino acids 42 to 66, was identified as a major determinant for NS4B oligomerization. Mutations that affected the oligomerization of NS4B disrupted membranous web formation and HCV RNA replication, implying that oligomerization of NS4B is required for the creation of a functional replication complex. These findings enhance our understanding of the functional architecture of the HCV replication complex and may provide new angles for therapeutic intervention. At the same time, they expand the list of positive-strand RNA virus replicase components acting as oligomers.
Resumo:
CD8+ cytotoxic T lymphocyte (CTL) can recognize and kill target cells that express only a few cognate major histocompatibility complex class I-peptide (pMHC) complexes. To better understand the molecular basis of this sensitive recognition process, we studied dimeric pMHC complexes containing linkers of different lengths. Although dimers containing short (10-30-A) linkers efficiently bound to and triggered intracellular calcium mobilization and phosphorylation in cloned CTL, dimers containing long linkers (> or = 80 A) did not. Based on this and on fluorescence resonance energy transfer experiments, we describe a dimeric binding mode in which two T cell receptors engage in an anti-parallel fashion two pMHC complexes facing each other with their constant domains. This binding mode allows integration of diverse low affinity interactions, which increases the overall binding and, hence, the sensitivity of antigen recognition. In proof of this, we demonstrated that pMHC dimers containing one agonist and one null ligand efficiently activate CTL, corroborating the importance of endogenous pMHC complexes in antigen recognition.
Resumo:
NR2E3 encodes the photoreceptor-specific nuclear hormone receptor that acts as a repressor of cone-specific gene expression in rod photoreceptors, and as an activator of several rod-specific genes. Recessive variants located in the ligand-binding domain (LBD) of NR2E3 cause enhanced short wavelength sensitive- (S-) cone syndrome (ESCS), a retinal degeneration characterized by an excess of S-cones and non-functional rods. We analyzed the dimerization properties of NR2E3 and the effect of disease-causing LBD missense variants by bioluminescence resonance energy transfer (BRET(2) ) protein interaction assays. Homodimerization was not affected in presence of p.A256V, p.R039G, p.R311Q, and p.R334G variants, but abolished in presence of p.L263P, p.L336P, p.L353V, p.R385P, and p.M407K variants. Homology modeling predicted structural changes induced by NR2E3 LBD variants. NR2E3 LBD variants did not affect interaction with CRX, but with NRL and rev-erbα/NR1D1. CRX and NRL heterodimerized more efficiently together, than did either with NR2E3. NR2E3 did not heterodimerize with TLX/NR2E1 and RXRα/NR2C1. The identification of a new compound heterozygous patient with detectable rod function, who expressed solely the p.A256V variant protein, suggests a correlation between LBD variants able to form functional NR2E3 dimers and atypical mild forms of ESCS with residual rod function.
Resumo:
Purpose: Mutations in the ligand-binding domain (LBD) of NR2E3 cause recessively inherited enhanced short wavelength sensitive (S-) cone syndrome (ESCS), Goldmann-Favre syndrome (GFS) and clumped pigmentary retinal degeneration (CPRD). In addition to ligand binding, the LBD contains also essential amino acid sequences for the oligomerization of nuclear receptors. The aim of our studies is to characterize the impact of mutations in the LBD on receptor oligomerization and transcriptional activity of NR2E3. Methods: The different NR2E3 mutants were generated by QuickChange mutagenesis and analyzed in 293T-based transactivation studies and BRET2 (bioluminescence resonance electron transfer) assays. In silico homology modeling of mutant proteins was also performed using available crystallographic data of related nuclear receptors. Results: The mutants p.W234S, p.A256V, p.A256E, p.L263P, p.R309G, p.R311Q, p.R334G, p.L336P, p.L353V, p.R385P and p.M407K, all located in the LBD, showed impaired receptor dimerization at various degrees. Impaired repressor dimerization as assessed by BRET2 assays did not always correlate with impaired repressor function of NR2E3 as assessed by cell-based reporter assays. There were minor differences of transcriptional activity of mutant proteins on mouse S-opsin (opn1sw), mouse cone arrestin (arr3) and human cone arrestin, suggesting that the effect of LBD mutations was independent of the promoter context. Conclusions: Mutational analysis and homology modeling allowed the characterization of potential oligomerization interfaces of the NR2E3 LBD. Additionally, mutations in NR2E3 LBD may cause recessive retinal degenerations by different molecular mechanisms.
Resumo:
Mechanical force modulates myriad cellular functions including migration, alignment, proliferation, and gene transcription. Mechanotransduction, the transmission of mechanical forces and its translation into biochemical signals, may be mediated by force induced protein conformation changes, subsequently modulating protein signaling. For the paxillin and focal adhesion kinase interaction, we demonstrate that force-induced changes in protein complex conformation, dissociation constant, and binding Gibbs free energy can be quantified by lifetime-resolved fluorescence energy transfer microscopy combined with intensity imaging calibrated by fluorescence correlation spectroscopy. Comparison with in vitro data shows that this interaction is allosteric in vivo. Further, spatially resolved imaging and inhibitor assays show that this protein interaction and its mechano-sensitivity are equal in the cytosol and in the focal adhesions complexes indicating that the mechano-sensitivity of this interaction must be mediated by soluble factors but not based on protein tyrosine phosphorylation.
Resumo:
Chronic atrial fibrillation affects millions of people worldwide. Its surgical treatment often fails to restore the transport function of the atrium. This study first introduces the concept of an atrial assist device (AAD) to restore the pump function of the atrium. The AAD is developed to be totally implantable in the human body with a transcutaneous energy transfer system to recharge the implanted battery. The ADD consists of a motorless pump based on artificial muscle technology, positioned on the external surface of the atrium to compress it and restore its muscular activity. A bench model reproduces the function of a fibrillating atrium to assess the circulatory support that this pump can provide. Atripump (Nanopowers SA, Switzerland) is a dome-shaped silicone-coated nitinol actuator 5 mm high, sutured on the external surface of the atrium. A pacemaker-like control unit drives the actuator that compresses the atrium, providing the mechanical support to the blood circulation. Electrical characteristics: the system is composed of one actuator that needs a minimal tension of 15 V and has a maximum current of 1.5 A with a 50% duty cycle. The implantable rechargeable battery is made of a cell having the following specifications: nominal tension of a cell: 4.1 V, tension after 90% of discharge: 3.5 V, nominal capacity of a cell: 163 mA h. The bench model consists of an open circuit made of latex bladder 60 mm in diameter filled with water. The bladder is connected to a vertically positioned tube that is filled to different levels, reproducing changes in cardiac preload. The Atripump is placed on the outer surface of the bladder. Pressure, volume and temperature changes were recorded. The contraction rate was 1 Hz with a power supply of 12 V, 400 mA for 200 ms. Preload ranged from 15 to 21 cm H(2)O. Maximal silicone membrane temperature was 55 degrees C and maximal temperature of the liquid environment was 35 degrees C. The pump produced a maximal work of 16 x 10(-3) J. Maximal volume pumped was 492 ml min(-1). This artificial muscle pump is compact, follows the Starling law and reproduces the hemodynamic performances of a normal atrium. It could represent a new tool to restore the atrial kick in persistent atrial fibrillation.
Resumo:
Protease-sensitive macromolecular prodrugs have attracted interest for bio-responsive drug delivery to sites with up-regulated proteolytic activities such as inflammatory or cancerous lesions. Here we report the development of a novel polymeric photosensitizer prodrug (T-PS) to target thrombin, a protease up-regulated in synovial tissues of rheumatoid arthritis (RA) patients, for minimally invasive photodynamic synovectomy. In T-PS, multiple photosensitizer units are tethered to a polymeric backbone via short, thrombin-cleavable peptide linkers. Photoactivity of the prodrug is efficiently impaired due to energy transfer between neighbouring photosensitizer units. T-PS activation by exogenous and endogenous thrombin induced an increase in fluorescence emission by a factor of 16 after in vitro digestion and a selective fluorescence enhancement in arthritic lesions in vivo, in a collagen-induced arthritis mouse model. In vitro studies on primary human synoviocytes showed a phototoxic effect only after enzymatic digestion of the prodrug and light irradiation, thus demonstrating the functionality of T-PS induced PDT. The developed photosensitizer prodrugs combine the passive targeting capacity of macromolecular drug delivery systems with site-selective photosensitizer release and activation. They illuminate lesions with pathologically enhanced proteolytic activity and induce cell death, subsequent to irradiation.
Resumo:
The brain uses lactate produced by glycolysis as an energy source. How lactate originated from the blood stream is used to fuel brain metabolism is not clear. The current study measures brain metabolic fluxes and estimates the amount of pyruvate that becomes labeled in glial and neuronal compartments upon infusion of [3-(13) C]lactate. For that, labeling incorporation into carbons of glutamate and glutamine was measured by (13) C magnetic resonance spectroscopy at 14.1 T and analyzed with a two-compartment model of brain metabolism to estimate rates of mitochondrial oxidation, glial pyruvate carboxylation, and the glutamate-glutamine cycle as well as pyruvate fractional enrichments. Extracerebral lactate at supraphysiological levels contributes at least two-fold more to replenish the neuronal than the glial pyruvate pools. The rates of mitochondrial oxidation in neurons and glia, pyruvate carboxylase, and glutamate-glutamine cycles were similar to those estimated by administration of (13) C-enriched glucose, the main fuel of brain energy metabolism. These results are in agreement with primary utilization of exogenous lactate in neurons rather than astrocytes. © 2014 Wiley Periodicals, Inc.
Resumo:
The Krebs (or tricarboxylic acid (TCA)) cycle has a central role in the regulation of brain energy regulation and metabolism, yet brain TCA cycle intermediates have never been directly detected in vivo. This study reports the first direct in vivo observation of a TCA cycle intermediate in intact brain, namely, 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity. Our observation reveals important information about in vivo biochemical processes hitherto considered undetectable. In particular, it provides direct evidence that transport across the inner mitochondria membrane is rate limiting in the brain. The hyperpolarized magnetic resonance protocol designed for this study opens the way to direct and real-time studies of TCA cycle kinetics.
Resumo:
BACKGROUND: Occupational risks, the present nuclear threat, and the potential danger associated with nuclear power have raised concerns regarding the metabolism of plutonium in pregnant women. OBJECTIVE: We measured plutonium levels in the milk teeth of children born between 1951 and 1995 to assess the potential risk that plutonium incorporated by pregnant women might pose to the radiosensitive tissues of the fetus through placenta transfer. METHODS: We used milk teeth, whose enamel is formed during pregnancy, to investigate the transfer of plutonium from the mother's blood plasma to the fetus. We measured plutonium using sensitive sector field inductively coupled plasma mass spectrometry techniques. We compared our results with those of a previous study on strontium-90 ((90)Sr) released into the atmosphere after nuclear bomb tests. RESULTS: Results show that plutonium activity peaks in the milk teeth of children born about 10 years before the highest recorded levels of plutonium fallout. By contrast, (90)Sr, which is known to cross the placenta barrier, manifests differently in milk teeth, in accordance with (90)Sr fallout deposition as a function of time. CONCLUSIONS: These findings demonstrate that plutonium found in milk teeth is caused by fallout that was inhaled around the time the milk teeth were shed and not from any accumulation during pregnancy through placenta transfer. Thus, plutonium may not represent a radiologic risk for the radiosensitive tissues of the fetus.
Resumo:
Genomic islands, large potentially mobile regions of bacterial chromosomes, are a major contributor to bacteria evolution. Here, we investigated the fitness cost and phenotypic differences between the bacterium Pseudomonas aeruginosa PAO1 and a derivative carrying one integrated copy of the clc element, a 103-kb genomic island [and integrative and conjugative element (ICE)] originating in Pseudomonas sp. strain B13 and a close relative of genomic islands found in clinical and environmental isolates of P. aeruginosa. By using a combination of whole genome transcriptome profiling, phenotypic arrays, competition experiments, and biofilm formation studies, only few differences became apparent, such as reduced biofilm growth and fourfold stationary phase repression of genes involved in acetoin metabolism in PAO1 containing the clc element. In contrast, PAO1 carrying the clc element acquired the capacity to grow on 3-chlorobenzoate and 2-aminophenol as sole carbon and energy substrates. No fitness loss >1% was detectable in competition experiments between PAO1 and PAO1 carrying the clc element. The genes from the clc element were not silent in PAO1, and excision was observed, although transfer of clc from PAO1 to other recipient bacteria was reduced by two orders of magnitude. Our results indicate that newly acquired mobile DNA not necessarily invoke an important fitness cost on their host. Absence of immediate detriment to the host may have contributed to the wide distribution of genomic islands like clc in bacterial genomes