45 resultados para Liver function


Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Thymostimulin is a thymic peptide fraction with immune-mediated cytotoxicity against hepatocellular carcinoma (HCC) in vitro and palliative efficacy in advanced HCC in two independent phase II trials. The aim of this study was to assess the efficacy of thymostimulin in a phase III trial. METHODS: The study was designed as a prospective randomised, placebo-controlled, double-blind, multicenter clinical phase III trial. Between 10/2002 and 03/2005, 135 patients with locally advanced or metastasised HCC (Karnofsky >or=60%/Child-Pugh <or= 12) were randomised to receive thymostimulin 75 mg s.c. 5x/week or placebo stratified according to liver function. Primary endpoint was twelve-month survival, secondary endpoints overall survival (OS), time to progression (TTP), tumor response, safety and quality of life. A subgroup analysis according to liver function, KPS and tumor stage (Okuda, CLIP and BCLC) formed part of the protocol. RESULTS: Twelve-month survival was 28% [95%CI 17-41; treatment] and 32% [95%CI 19-44; control] with no significant differences in median OS (5.0 [95% CI 3.7-6.3] vs. 5.2 [95% CI 3.5-6.9] months; p = 0.87, HR = 1.04 [95% CI 0.7-1.6]) or TTP (5.3 [95%CI 2.0-8.6] vs. 2.9 [95%CI 2.6-3.1] months; p = 0.60, HR = 1.13 [95% CI 0.7-1.8]). Adjustment for liver function, Karnofsky status or tumor stage did not affect results. While quality of life was similar in both groups, fewer patients on thymostimulin suffered from accumulating ascites and renal failure. CONCLUSIONS: In our phase III trial, we found no evidence of any benefit to thymostimulin in the treatment of advanced HCC and there is therefore no justification for its use as single-agent treatment. The effect of thymostimulin on hepato-renal function requires further confirmation. TRIAL REGISTRATION: Current Controlled Trials ISRCTN64487365.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hepatocellular carcinoma (HCC) is one of the most frequent malignant tumors worldwide and its incidence has increased over the last years in most developed countries. The majority of HCCs occur in the context of liver cirrhosis. Therefore, patients with cirrhosis and those with hepatitis B virus infection should enter a surveillance program. Detection of a focal liver lesion by ultrasound should be followed by further investigations to confirm the diagnosis and to permit staging. A number of curative and palliative treatment options are available today. The choice of treatment will depend on the tumor stage, liver function and the presence of portal hypertension as well as the general condition of the patient. A multidisciplinary approach is mandatory to offer to each patient the best treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interest in marine natural products has allowed the discovery of new drugs and trabectedin (ET-743, Yondelis), derived from the marine tunicate Ecteinascidia turbinata, was approved for clinical use in 2007. It binds to the DNA minor groove leading to interferences with the intracellular transcription pathways and DNA-repair proteins. In vitro antitumor activity was demonstrated against various cancer cell lines and soft tissue sarcoma cell lines. In phase I studies tumor responses were observed also in osteosarcomas and different soft tissue sarcoma subtypes. The most common toxicities were myelosuppression and transient elevation of liver function tests, which could be reduced by dexamethasone premedication. The efficacy of trabectedin was established in three phase II studies where it was administered at 1.5 mg/m2 as a 24 h intravenous infusion repeated every three weeks, in previously treated patients. The objective response rate was 3.7%-8.3% and the tumor control rate (which included complete response, partial response and stable disease) was obtained in half of patients for a median overall survival reaching 12 months. In nonpretreated patients the overall response rate was 17%. Twenty-four percent of patients were without progression at six months. The median overall survival was almost 16 months with 72% surviving at one year. Predictive factors of response are being explored to identify patients who are most likely to respond to trabectedin. Combination with other agents are currently studied with promising results. In summary trabectedin is an active new chemotherapeutic agents that has demonstrated its role in the armamentarium of treatments for patients with sarcomas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Although liver and gut microbiome crosstalk has been reported, microbiome-mediated effects on peripheral circadian clocks and their output genes are less well known. Here, we report that germ-free (GF) mice display altered daily oscillation of clock gene expression with a concomitant change in the expression of clock output regulators. Mice exposed to microbes typically exhibit characterized activities of nuclear receptors, some of which (PPARα, LXRβ) regulate specific liver gene expression networks, but these activities are profoundly changed in GF mice. These alterations in microbiome-sensitive gene expression patterns are associated with daily alterations in lipid, glucose, and xenobiotic metabolism, protein turnover, and redox balance, as revealed by hepatic metabolome analyses. Moreover, at the systemic level, daily changes in the abundance of biomarkers such as HDL cholesterol, free fatty acids, FGF21, bilirubin, and lactate depend on the microbiome. Altogether, our results indicate that the microbiome is required for integration of liver clock oscillations that tune output activators and their effectors, thereby regulating metabolic gene expression for optimal liver function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Although liver and gut microbiome crosstalk has been reported, microbiome-mediated effects on peripheral circadian clocks and their output genes are less well known. Here, we report that germ-free (GF) mice display altered daily oscillation of clock gene expression with a concomitant change in the expression of clock output regulators. Mice exposed to microbes typically exhibit characterized activities of nuclear receptors, some of which (PPARα, LXRβ) regulate specific liver gene expression networks, but these activities are profoundly changed in GF mice. These alterations in microbiome-sensitive gene expression patterns are associated with daily alterations in lipid, glucose, and xenobiotic metabolism, protein turnover, and redox balance, as revealed by hepatic metabolome analyses. Moreover, at the systemic level, daily changes in the abundance of biomarkers such as HDL cholesterol, free fatty acids, FGF21, bilirubin, and lactate depend on the microbiome. Altogether, our results indicate that the microbiome is required for integration of liver clock oscillations that tune output activators and their effectors, thereby regulating metabolic gene expression for optimal liver function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES: The aim of this study was to assess the safety of the concurrent administration of a clopidogrel and prasugrel loading dose in patients undergoing primary percutaneous coronary intervention. BACKGROUND: Prasugrel is one of the preferred P2Y12 platelet receptor antagonists for ST-segment elevation myocardial infarction patients. The use of prasugrel was evaluated clinically in clopidogrel-naive patients. METHODS: Between September 2009 and October 2012, a total of 2,023 STEMI patients were enrolled in the COMFORTABLE (Comparison of Biomatrix Versus Gazelle in ST-Elevation Myocardial Infarction [STEMI]) and the SPUM-ACS (Inflammation and Acute Coronary Syndromes) studies. Patients receiving a prasugrel loading dose were divided into 2 groups: 1) clopidogrel and a subsequent prasugrel loading dose; and 2) a prasugrel loading dose. The primary safety endpoint was Bleeding Academic Research Consortium types 3 to 5 bleeding in hospital at 30 days. RESULTS: Of 2,023 patients undergoing primary percutaneous coronary intervention, 427 (21.1%) received clopidogrel and a subsequent prasugrel loading dose, 447 (22.1%) received a prasugrel loading dose alone, and the remaining received clopidogrel only. At 30 days, the primary safety endpoint was observed in 1.9% of those receiving clopidogrel and a subsequent prasugrel loading dose and 3.4% of those receiving a prasugrel loading dose alone (adjusted hazard ratio [HR]: 0.57; 95% confidence interval [CI]: 0.25 to 1.30, p = 0.18). The HAS-BLED (hypertension, abnormal renal/liver function, stroke, bleeding history or predisposition, labile international normalized ratio, elderly, drugs/alcohol concomitantly) bleeding score tended to be higher in prasugrel-treated patients (p = 0.076). The primary safety endpoint results, however, remained unchanged after adjustment for these differences (clopidogrel and a subsequent prasugrel loading dose vs. prasugrel only; HR: 0.54 [95% CI: 0.23 to 1.27], p = 0.16). No differences in the composite of cardiac death, myocardial infarction, or stroke were observed at 30 days (adjusted HR: 0.66, 95% CI: 0.27 to 1.62, p = 0.36). CONCLUSIONS: This observational, nonrandomized study of ST-segment elevation myocardial infarction patients suggests that the administration of a loading dose of prasugrel in patients pre-treated with a loading dose of clopidogrel is not associated with an excess of major bleeding events. (Comparison of Biomatrix Versus Gazelle in ST-Elevation Myocardial Infarction [STEMI] [COMFORTABLE]; NCT00962416; and Inflammation and Acute Coronary Syndromes [SPUM-ACS]; NCT01000701).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Collectively, research aimed to understand the regeneration of certain tissues has unveiled the existence of common key regulators. Knockout studies of the murine Nuclear Factor I-C (NFI-C) transcription factor revealed a misregulation of growth factor signaling, in particular that of transforming growth factor ß-1 (TGF-ßl), which led to alterations of skin wound healing and the growth of its appendages, suggesting it may be a general regulator of regenerative processes. We sought to investigate this further by determining whether NFI-C played a role in liver regeneration. Liver regeneration following two-thirds removal of the liver by partial hepatectomy (PH) is a well-established regenerative model whereby changes elicited in hepatocytes following injury lead to a rapid, phased proliferation. However, mechanisms controlling the action of liver proliferative factors such as transforming growth factor-ßl (TGF-ß1) and plasminogen activator inhibitor-1 (PAI-1) remain largely unknown. We show that the absence of NFI-C impaired hepatocyte proliferation due to an overexpression of PAI-1 and the subsequent suppression of urokinase plasminogen (uPA) activity and hepatocyte growth factor (HGF) signaling, a potent hepatocyte mitogen. This indicated that NFI-C first acts to promote hepatocyte proliferation at the onset of liver regeneration in wildtype mice. The subsequent transient down regulation of NFI-C, as can be explained by a self- regulatory feedback loop with TGF-ßl, may limit the number of hepatocytes entering the first wave of cell division and/or prevent late initiations of mitosis. Overall, we conclude that NFI-C acts as a regulator of the phased hepatocyte proliferation during liver regeneration. Taken together with NFI-C's actions in other in vivo models of (re)generation, it is plausible that NFI-C may be a general regulator of regenerative processes. - L'ensemble des recherches visant à comprendre la régénération de certains tissus a permis de mettre en évidence l'existence de régulateurs-clés communs. L'étude des souris, dépourvues du gène codant pour le facteur de transcription NFI-C (Nuclear Factor I-C), a montré des dérèglements dans la signalisation de certains facteurs croissance, en particulier du TGF-ßl (transforming growth factor-ßl), ce qui conduit à des altérations de la cicatrisation de la peau et de la croissance des poils et des dents chez ces souris, suggérant que NFI-C pourrait être un régulateur général du processus de régénération. Nous avons cherché à approfondir cette question en déterminant si NFI-C joue un rôle dans la régénération du foie. La régénération du foie, induite par une hépatectomie partielle correspondant à l'ablation des deux-tiers du foie, constitue un modèle de régénération bien établi dans lequel la lésion induite conduit à la prolifération rapide des hépatocytes de façon synchronisée. Cependant, les mécanismes contrôlant l'action de facteurs de prolifération du foie, comme le facteur de croissance TGF-ßl et l'inhibiteur de l'activateur du plasminogène PAI-1 (plasminogen activator inhibitor-1), restent encore très méconnus. Nous avons pu montrer que l'absence de NFI-C affecte la prolifération des hépatocytes, occasionnée par la surexpression de PAI-1 et par la subséquente suppression de l'activité de la protéine uPA (urokinase plasminogen) et de la signalisation du facteur de croissance des hépatocytes HGF (hepatocyte growth factor), un mitogène puissant des hépatocytes. Cela indique que NFI-C agit en premier lieu pour promouvoir la prolifération des hépatocytes au début de la régénération du foie chez les souris de type sauvage. La subséquente baisse transitoire de NFI-C, pouvant s'expliquer par une boucle rétroactive d'autorégulation avec le facteur TGF-ßl, pourrait limiter le nombre d'hépatocytes qui entrent dans la première vague de division cellulaire et/ou inhiber l'initiation de la mitose tardive. L'ensemble de ces résultats nous a permis de conclure que NFI-C agit comme un régulateur de la prolifération des hépatocytes synchrones au cours de la régénération du foie.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have shown previously that a fetal sheep liver extract (FSLE) containing significant quantities of fetal ovine gamma globin chain (Hbgamma) and LPS injected into aged (>20 months) mice could reverse the altered polarization (increased IL-4 and IL-10 with decreased IL-2 and IFNgamma) in cytokine production seen from ConA stimulated lymphoid cells of those mice. The mechanism(s) behind this change in cytokine production were not previously investigated. We report below that aged mice show a >60% decline in numbers and suppressive function of both CD4(+)CD25(+)Foxp3(+) Treg and so-called Tr3 (CD4(+)TGFbeta(+)), and that their number/function is restored to levels seen in control (8-week-old) mice by FSLE. In addition, on a per cell basis, CD4(+)CD25(-)Treg from aged mice were >4-fold more effective in suppression of proliferation and IL-2 production from ConA-activated lymphoid cells of a pool of CD4(+)CD25(-)T cells from 8-week-old mice than similar cells from young animals, and this suppression by CD25(-)T cells was also ameliorated following FSLE treatment. Infusion of anti-TGFbeta and anti-IL-10 antibodies in vivo altered Treg development following FSLE treatment, and attenuated FSLE-induced alterations in cytokine production profiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Organ transplantation is a biological and psychological challenge and graft acceptance is an important achievement for patients. Patients' concerns toward the deceased donor and the organ may contribute to this process. Method: Forty-seven patients involved in heart (N=9), liver (N=8), lung (N=14) and kidney (N=16) transplantation participated in IRB-approved longitudinal semi-structured interviews: (T1) registered on the waiting-list, (T2) six months and (T3) twelve months after transplantation. Qualitative pattern analysis (QUAPA) was carried out on the verbatim transcripts and concerns about the donor and the organ were then analysed. Results: - Donor's representation: At T1, patients were reluctant to talk about the donor: 27% expressed culpability and 19% accepted the clause of anonymity. At T2, intense emotions were associated with the reminiscing about the donor and 45% highlighted the generosity of his/her act. In addition, heart, lung and kidney recipients were concerned about the donor's identity: 42% challenged the clause of anonymity. Liver recipients complained about anonymity, but could nevertheless cope with it. At T3, 47% of heart, lung and kidney recipients thought daily of the donor and 33% were still looking for information about him/her. Liver recipients rarely have thoughts about the donor. - Organ representation: At T1, organ descriptions were biomedical (49% of the interviewees) and more rarely, mainly heart candidates, referred to the symbolic meaning of the organ. After transplantation (T2-T3), function was underlined. Acceptance and organ integration were associated with post-operative outcomes (23%) and psychological well-being (45%). Some patients (32%) inferred the donor's personality from the organ quality and felt privileged having received an organ in such a good state. Conclusion: Donor's representations should be explored during the transplantation process as they play an important role in the psychological acceptance of the graft.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rotation-mediated aggregate cultures of foetal rat liver cells were prepared and grown in a chemically defined medium. Their capacity for cellular organisation and maturation was studied over a culture period of 3 wk by using both morphologic and biochemical criteria. It was found that within each aggregate, distinct liver cell types were present and attained their normal, differentiated phenotype. Parenchymal cells formed small acini with a central lumen. Within the first 2 wk in culture, albumin and ferritin mRNA levels were maintained, while the alpha-fetoprotein mRNA levels decreased, and tyrosine aminotransferase (TAT) gene expression increased. No significant response to glucocorticoids was observed in early cultures, whereas after 3 wk a marked increase in TAT mRNA levels was elicited by dexamethasone and glucagon (additive stimulatory effects). The results show that foetal rat liver cells cultured in a chemically defined medium are able to rearrange themselves into histotypic structures, and display a developmental pattern of gene expression comparable to that of perinatal rat liver in vivo. This culture system offers therefore a useful model to study the development and function of liver cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Little is known about the role of the transcription factor peroxisome proliferator-activated receptor (PPAR) beta/delta in liver. Here we set out to better elucidate the function of PPARbeta/delta in liver by comparing the effect of PPARalpha and PPARbeta/delta deletion using whole genome transcriptional profiling and analysis of plasma and liver metabolites. In fed state, the number of genes altered by PPARalpha and PPARbeta/delta deletion was similar, whereas in fasted state the effect of PPARalpha deletion was much more pronounced, consistent with the pattern of gene expression of PPARalpha and PPARbeta/delta. Minor overlap was found between PPARalpha- and PPARbeta/delta-dependent gene regulation in liver. Pathways upregulated by PPARbeta/delta deletion were connected to innate immunity and inflammation. Pathways downregulated by PPARbeta/delta deletion included lipoprotein metabolism and various pathways related to glucose utilization, which correlated with elevated plasma glucose and triglycerides and reduced plasma cholesterol in PPARbeta/delta-/- mice. Downregulated genes that may underlie these metabolic alterations included Pklr, Fbp1, Apoa4, Vldlr, Lipg, and Pcsk9, which may represent novel PPARbeta/delta target genes. In contrast to PPARalpha-/- mice, no changes in plasma free fatty acid, plasma beta-hydroxybutyrate, liver triglycerides, and liver glycogen were observed in PPARbeta/delta-/- mice. Our data indicate that PPARbeta/delta governs glucose utilization and lipoprotein metabolism and has an important anti-inflammatory role in liver. Overall, our analysis reveals divergent roles of PPARalpha and PPARbeta/delta in regulation of gene expression in mouse liver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Liver kidney microsomal type 1 (LKM-1) antibodies have been shown to decrease CYP2D6 activity in vitro. We investigated whether LKM-1 antibodies might reduce CYP2D6 activity also in vivo.Materials and Methods All patients with chronic hepatitis C and LKM-1 antibodies enrolled in the Swiss Hepatitis C Cohort Study (SCCS) were assessed: ten were eligible and fi tted to patients without LKM-1 antibodies. Patients were genotyped for CYP2D6 variants to exclude individuals with a poor metabolizer genotype. CYP2D6 activity was measured by a specifi c substrate using the dextromethorphan/dextrorphan (DEM/DOR) metabolic ratio to classify patients into four activity phenotypes (i.e. ultrarapid, extensive, intermediate and poor metabolizers). The concordance between phenotype based on DEM/DOR ratio and phenotype expected from genotype was examined in LKM-1 positive and negative patients. Groups were compared with respect to the DEM/DOR metabolic ratio.Results All patients had a CYP2D6 extensive metabolizer genotype. The observed phenotype was concordant with CYP2D6 genotype in most LKM-negative patients, whereas only three (30%) LKM-1 positive patients had a concordant phenotype (six presented an intermediate and one a poor metabolizer phenotype). The median DEM/DOR ratio was six-fold higher in LKM-1 positive than in LKM-1 negative patients (0.096 vs. 0.016, p = 0.004), indicating that CYP2D6 metabolic function was significantly reduced in the presence of LKM-1 antibodies.Conclusion In chronic hepatitis C patients with LKM-1 antibodies, the CYP2D6 metabolic activity was on average reduced by 80%. The impact of LKM-1 antibodies on CYP2D6-mediated drug metabolism pathways warrants further translational studies in the setting of new protease inhibitor therapies

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exogenous oxidized cholesterol disturbs both lipid metabolism and immune functions. Therefore, it may perturb these modulations with ageing. Effects of the dietary protein type on oxidized cholesterol-induced modulations of age-related changes in lipid metabolism and immune function was examined using differently aged (4 weeks versus 8 months) male Sprague-Dawley rats when casein, soybean protein or milk whey protein isolate (WPI) was the dietary protein source, respectively. The rats were given one of the three proteins in diet containing 0.2% oxidized cholesterols mixture. Soybean protein, as compared with the other two proteins, significantly lowered both the serum thiobarbituric acid reactive substances value and cholesterol, whereas it elevated the ratio of high density lipoprotein-cholesterol/cholesterol in young rats, but not in adult. Moreover, soybean protein, but not casein and WPI, suppressed the elevation of Delta6 desaturation indices of phospholipids in both liver and spleen, particularly in young. On the other hand, WPI, compared to the other two proteins, inhibited the leukotriene B4 production of spleen, irrespective of age. Soybean protein reduced the ratio of CD4(+)/CD8(+) T-cells in splenic lymphocytes. Therefore, the levels of immunoglobulin (Ig)A, IgE and IgG in serum were lowered in rats given soybean protein in both age groups except for IgA in adult, although these observations were not shown in rats given other proteins. Thus, various perturbations of lipid metabolism and immune function caused by oxidized cholesterol were modified depending on the type of dietary protein. The moderation by soybean protein on the change of lipid metabolism seems to be susceptible in young rats whose homeostatic ability is immature. These observations may be exerted through both the promotion of oxidized cholesterol excretion to feces and the change of hormonal release, while WPI may suppress the disturbance of immune function by oxidized cholesterol in both ages. This alleviation may be associated with a large amount of lactoglobulin in WPI. These results thus showed a possibility that oxidized cholesterol-induced perturbations of age-related changes of lipid metabolism and immune function can be moderated by both the selection and combination of dietary protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé Le gène c-myc est un des oncogènes les plus fréquemment mutés dans les tumeurs humaines. Même si plus de 70 % des cancers humains montrent une dérégulation de c-Myc, les connaissances sur son rôle physiologique pendant le développement, et dans la souris adulte restent très peu connus. Récemment, notre laboratoire a pu montrer que c-Myc contrôle l'équilibre entre le renouvellement et la différenciation des cellules souches hématopoïetiques (CSH) dans la souris adulte. Ceci est probablement dû à lacapacité de c-Myc de contrôler l'entrée et la sortie des CSH de leur niche de la moelle osseuse, en régulant plusieurs molécules d'adhésion, parmi lesquelles la cadhérine-N (Wilson et al., 2004; Wilson and Trumpp, 2006). Des études utilisant un mutant d'inactivation ont demontré que la protéine c-Myc est essentielle pour le développement au delà du jour embryonnaire E9.5. Les embryons c-Myc déficients sont plus petits que la normale et possèdent de nombreux défauts; en particulier ils ne peuvent établir un système hématopoietique embryonnaire primitif (Trumpp et al., 2001). Nous avons récemment découvert que le développement du placenta dépend de la présence de cMyc. Ceci permet de proposer que certains, sinon tous, les défauts embryonnaires puorraient dériver indirectement d'un défaut nutritionnel causé par la défaillance du placenta. Afin de répondre à cette question de manière génétique, nous avons utilisé l'allele conditionel c-mycflox (Trumpp et al., 2001) en combinaison avec l'allele Sox2-Cre (Hayashi et al., 2002). Celui-ci détermine l'expression de la récombinase Cre spécifiquement dans les cellules de l'épiblaste à partir de E6.5, tandis qu'il n'y a pas, ou seulement très peu, d'activité de la récombinase Cre dans les tissus extraembryonnaires.Alnsi, cette stratégie nous permet de générer des embryons sans c-Myc qui se développent en présence d'un compartment extraembryonnaire ou c-Myc est exprimé normalement (Sox2Cre;c-mycflox2) Ces embryons, Sox2Cre;c-mycflox2 se développent et grandissent normalement tout en formant un système vasculaire normal, mais meurent à E11.5 à cause d'un sévère manque de cellules hématopoïetiques. De façon très intéressante, la seule population qui semble être présente en nombre à peu près normal dans ces embryons est celle des précurseurs et des cellules souches. Les cellules qui forment cette population prolifèrent normalement mais ne peuvent pas former des colonies in vitro, ce qui montre que ces cellules ont perdu leur activité de cellules souches. Cependant, lorsque nous avons analysé ces cellules plus en détail en éxaminant l'expression des molécules d'intégrine nous avons découvert que l'integrine ß est sur-éxprimée à la surface des cellules c-Myc déficientes. Ceci pourrait indiquer un mécanisme par lequel c-Myc régule des molécules d'adhésion sur les cellules du sang. En conséquence, en absence de c-Myc, l'adhésion et la migration des cellules du sang de l'AGM (Aorte-Gonade-Mésonéphros) vers le foie de l'embryon, à travers le système vasculaire, est compromise. En outre, nous avons pu montrer que les hépatocytes du foie, qui constitue le site principal de formation des cellules hématopoïetiques pendant le développement, est sévèrement atteint dans des Sox2Cre;c-mycflox2 embryons. Ceci n'est pas du à un défaut propre aux cellules hépatiques qui ont perdu c-Myc, mais résulte plutôt de l'absence de cellules hématopoietïques qui normalement colonisent le foie à ce stade du développement. Ces résultats représentent la première preuve directe que le développement des hépatoblastes est dépendant de signaux provenant des cellules du sang. Summary The myc gene is one of the most frequently mutated oncogenes in human tumors. It is found to be mis-regulated in over 70% of all human cancers. However, our knowledge about its physiological role in mammalian development and adulthood remains limited. Recent work in our laboratory showed that c-Myc controls the balance between hematopoietic stem cell (HSC) self-renewal and differentiation in the adult mouse. This is likely due to the capacity of c-Myc to control entry and exit of HSCs from the bone marrow niche by regulating a number of cell adhesion molecules including N-cadherin (Wilson et al., 2004; Wilson and Trumpp 2006). During development knockout studies showed that c-Myc is required for embryonic development beyond embryonic day (E) 9.5. c-Myc deficient embryos are severely reduced in size and show multiple defects including the failure to establish a primitive hematopoietic system (Trumpp et al., 2001). Importantly, we recentry uncovered that placental development also seems to depend on normal c-Myc function, raising the possibility that some if not all of the embryonic defects observed could be mediated indirectly by a nutrition defect caused by placental failure. To address this possibility genetically, we took advantage of the conditional c-mycflox allele (Trumpp et al., 2001) in combination with the Sox2-Cre allele (Hayashi et al., 2002), in which Cre expression is specifically targeted to all epiblast cells by E6.5, while there is little or no Cre activity inextra-embryonic lineages. Thus, this strategy allows the generation of c-Myc deficient embryos, which develop within a normal c-Myc expressing extra-embryonic compartment (Sox2Cre;c-mycflox2) Such Sox2Cre;c-mycflox2 embryos develop and grow appropriately and form a normal vascular system but die at E11.5 due to a severe lack of blood cells. Interestingly, the only hematopoietic population that seems to be present in almost normal numbers in the embryo is the stem/progenitor cell population. Cells within this populatíon proliferate normal but can not give rise to hematopoietic colonies in vitro showing that functional hematopoietic stem cell (HSC) activity is lost. However, when we analyzed these phenotypic HSCs in more detail and examined integrin expression in mutant stem/progenitor cells, we observed that ß1-integrin is upregulated. This may point to a potential mechanism whereby c-Myc regulates adhesíon molecules on hematopoietic cells and thereby disturbs adhesion and migration from the AGM (aorta-gonads-mesonephros) through the vascular system to the liver. Furthermore, we uncovered that the fetal liver, the main site of hematopoietic expansion at that stage, is severely affected in Sox2Cre;c-mycflox2 embryos and that this is not due to a cell intrinsic defect of c-Myc deficient hepatocytes but rather due to the lack of hematopoietic cells that normally colonize the fetal liver at that stage of development. This provides first direct evidence that hepatoblast development depends on signals derived from blood cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PARbZip proteins (proline and acidic amino acid-rich basic leucine zipper) represent a subfamily of circadian transcription factors belonging to the bZip family. They are transcriptionally controlled by the circadian molecular oscillator and are suspected to accomplish output functions of the clock. In turn, PARbZip proteins control expression of genes coding for enzymes involved in metabolism, but also expression of transcription factors which control the expression of these enzymes. For example, these transcription factors control vitamin B6 metabolism, which influences neurotransmitter homeostasis in the brain, and loss of PARbZip function leads to spontaneous and sound-induced epilepsy that are frequently lethal. In liver, kidney, and small intestine, PAR bZip transcription factors regulate phase I, II, and III detoxifying enzymes in addition to the constitutive androstane receptor (CAR), one of the principal sensors of xenobiotics. Indeed, knockout mice for the three PARbZip transcription factors are deficient in xenobiotic detoxification and display high morbidity, high mortality, and accelerated aging. Finally, less than 20% of these animals reach an age of 1 year. Accumulated evidences suggest that PARbZip transcription factors play a role of relay, coupling circadian metabolism of xenobiotic and probably endobiotic substances to the core clock circuitry of local circadian oscillators.