21 resultados para Lie algebras of vector fields


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to review the scientific literature from August 2007 to July 2010. The review is focused on more than 420 published papers. The review will not cover information coming from international meetings available only in abstract form. Fingermarks constitute an important chapter with coverage of the identification process as well as detection techniques on various surfaces. We note that the research has been very dense both at exploring and understanding current detection methods as well as bringing groundbreaking techniques to increase the number of marks detected from various objects. The recent report from the US National Research Council (NRC) is a milestone that has promoted a critical discussion on the state of forensic science and its associated research. We can expect a surge of interest in research in relation to cognitive aspect of mark and print comparison, establishment of relevant forensic error rates and statistical modelling of the selectivity of marks' attributes. Other biometric means of forensic identification such as footmarks or earmarks are also covered in the report. Compared to previous years, we noted a decrease in the number of submission in these areas. No doubt that the NRC report has set the seed for further investigation of these fields as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents an approach for mapping of precipitation data. The main goal is to perform spatial predictions and simulations of precipitation fields using geostatistical methods (ordinary kriging, kriging with external drift) as well as machine learning algorithms (neural networks). More practically, the objective is to reproduce simultaneously both the spatial patterns and the extreme values. This objective is best reached by models integrating geostatistics and machine learning algorithms. To demonstrate how such models work, two case studies have been considered: first, a 2-day accumulation of heavy precipitation and second, a 6-day accumulation of extreme orographic precipitation. The first example is used to compare the performance of two optimization algorithms (conjugate gradients and Levenberg-Marquardt) of a neural network for the reproduction of extreme values. Hybrid models, which combine geostatistical and machine learning algorithms, are also treated in this context. The second dataset is used to analyze the contribution of radar Doppler imagery when used as external drift or as input in the models (kriging with external drift and neural networks). Model assessment is carried out by comparing independent validation errors as well as analyzing data patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infection with Leishmania major parasites results in the development of cutaneous ulcerative lesions on the skin. We investigated the protective potential of a single, recombinant histone H1 antigen against cutaneous leishmaniasis in an outbred population of vervet monkeys, using Montanide adjuvant. Protection was assessed by challenging the animals with a mixture of vector sand fly salivary-gland lysate and a low dose of in vitro-derived parasites, thus more closely mimicking natural infection induced by L. major. The course of infection in immunized monkeys was compared with that of animals that had healed from a primary infection and were immune. The monkeys immunized with recombinant histone H1 showed a reduced development of lesion size, compared with controls. Our study therefore illustrates the potential use of histone H1 as a vaccine candidate against cutaneous leishmaniasis in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To develop and validate a simple, integer-based score to predict functional outcome in acute ischemic stroke (AIS) using variables readily available after emergency room admission. METHODS: Logistic regression was performed in the derivation cohort of previously independent patients with AIS (Acute Stroke Registry and Analysis of Lausanne [ASTRAL]) to identify predictors of unfavorable outcome (3-month modified Rankin Scale score >2). An integer-based point-scoring system for each covariate of the fitted multivariate model was generated by their β-coefficients; the overall score was calculated as the sum of the weighted scores. The model was validated internally using a 2-fold cross-validation technique and externally in 2 independent cohorts (Athens and Vienna Stroke Registries). RESULTS: Age (A), severity of stroke (S) measured by admission NIH Stroke Scale score, stroke onset to admission time (T), range of visual fields (R), acute glucose (A), and level of consciousness (L) were identified as independent predictors of unfavorable outcome in 1,645 patients in ASTRAL. Their β-coefficients were multiplied by 4 and rounded to the closest integer to generate the score. The area under the receiver operating characteristic curve (AUC) of the score in the ASTRAL cohort was 0.850. The score was well calibrated in the derivation (p = 0.43) and validation cohorts (0.22 [Athens, n = 1,659] and 0.49 [Vienna, n = 653]). AUCs were 0.937 (Athens), 0.771 (Vienna), and 0.902 (when pooled). An ASTRAL score of 31 indicates a 50% likelihood of unfavorable outcome. CONCLUSIONS: The ASTRAL score is a simple integer-based score to predict functional outcome using 6 readily available items at hospital admission. It performed well in double external validation and may be a useful tool for clinical practice and stroke research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The capacity to interact socially and share information underlies the success of many animal species, humans included. Researchers of many fields have emphasized the evo¬lutionary significance of how patterns of connections between individuals, or the social networks, and learning abilities affect the information obtained by animal societies. To date, studies have focused on the dynamics either of social networks, or of the spread of information. The present work aims to study them together. We make use of mathematical and computational models to study the dynamics of networks, where social learning and information sharing affect the structure of the population the individuals belong to. The number and strength of the relationships between individuals, in turn, impact the accessibility and the diffusion of the shared information. Moreover, we inves¬tigate how different strategies in the evaluation and choice of interacting partners impact the processes of knowledge acquisition and social structure rearrangement. First, we look at how different evaluations of social interactions affect the availability of the information and the network topology. We compare a first case, where individuals evaluate social exchanges by the amount of information that can be shared by the partner, with a second case, where they evaluate interactions by considering their partners' social status. We show that, even if both strategies take into account the knowledge endowments of the partners, they have very different effects on the system. In particular, we find that the first case generally enables individuals to accumulate higher amounts of information, thanks to the more efficient patterns of social connections they are able to build. Then, we study the effects that homophily, or the tendency to interact with similar partners, has on knowledge accumulation and social structure. We compare the case where individuals who know the same information are more likely to learn socially from each other, to the opposite case, where individuals who know different information are instead more likely to learn socially from each other. We find that it is not trivial to claim which strategy is better than the other. Depending on the possibility of forgetting information, the way new social partners can be chosen, and the population size, we delineate the conditions for which each strategy allows accumulating more information, or in a faster way For these conditions, we also discuss the topological characteristics of the resulting social structure, relating them to the information dynamics outcome. In conclusion, this work paves the road for modeling the joint dynamics of the spread of information among individuals and their social interactions. It also provides a formal framework to study jointly the effects of different strategies in the choice of partners on social structure, and how they favor the accumulation of knowledge in the population. - La capacité d'interagir socialement et de partager des informations est à la base de la réussite de nombreuses espèces animales, y compris les humains. Les chercheurs de nombreux domaines ont souligné l'importance évolutive de la façon dont les modes de connexions entre individus, ou réseaux sociaux et les capacités d'apprentissage affectent les informations obtenues par les sociétés animales. À ce jour, les études se sont concentrées sur la dynamique soit des réseaux sociaux, soit de la diffusion de l'information. Le présent travail a pour but de les étudier ensemble. Nous utilisons des modèles mathématiques et informatiques pour étudier la dynamique des réseaux, où l'apprentissage social et le partage d'information affectent la structure de la population à laquelle les individus appartiennent. Le nombre et la solidité des relations entre les individus ont à leurs tours un impact sur l'accessibilité et la diffusion de l'informa¬tion partagée. Par ailleurs, nous étudions comment les différentes stratégies d'évaluation et de choix des partenaires d'interaction ont une incidence sur les processus d'acquisition des connaissances ainsi que le réarrangement de la structure sociale. Tout d'abord, nous examinons comment des évaluations différentes des interactions sociales influent sur la disponibilité de l'information ainsi que sur la topologie du réseau. Nous comparons un premier cas, où les individus évaluent les échanges sociaux par la quantité d'information qui peut être partagée par le partenaire, avec un second cas, où ils évaluent les interactions en tenant compte du statut social de leurs partenaires. Nous montrons que, même si les deux stratégies prennent en compte le montant de connaissances des partenaires, elles ont des effets très différents sur le système. En particulier, nous constatons que le premier cas permet généralement aux individus d'accumuler de plus grandes quantités d'information, grâce à des modèles de connexions sociales plus efficaces qu'ils sont capables de construire. Ensuite, nous étudions les effets que l'homophilie, ou la tendance à interagir avec des partenaires similaires, a sur l'accumulation des connaissances et la structure sociale. Nous comparons le cas où des personnes qui connaissent les mêmes informations sont plus sus¬ceptibles d'apprendre socialement l'une de l'autre, au cas où les individus qui connaissent des informations différentes sont au contraire plus susceptibles d'apprendre socialement l'un de l'autre. Nous constatons qu'il n'est pas trivial de déterminer quelle stratégie est meilleure que l'autre. En fonction de la possibilité d'oublier l'information, la façon dont les nouveaux partenaires sociaux peuvent être choisis, et la taille de la population, nous déterminons les conditions pour lesquelles chaque stratégie permet d'accumuler plus d'in¬formations, ou d'une manière plus rapide. Pour ces conditions, nous discutons également les caractéristiques topologiques de la structure sociale qui en résulte, les reliant au résultat de la dynamique de l'information. En conclusion, ce travail ouvre la route pour la modélisation de la dynamique conjointe de la diffusion de l'information entre les individus et leurs interactions sociales. Il fournit également un cadre formel pour étudier conjointement les effets de différentes stratégies de choix des partenaires sur la structure sociale et comment elles favorisent l'accumulation de connaissances dans la population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intravenous thrombolysis (IVT) as treatment in acute ischaemic strokes may be insufficient to achieve recanalisation in certain patients. Predicting probability of non-recanalisation after IVT may have the potential to influence patient selection to more aggressive management strategies. We aimed at deriving and internally validating a predictive score for post-thrombolytic non-recanalisation, using clinical and radiological variables. In thrombolysis registries from four Swiss academic stroke centres (Lausanne, Bern, Basel and Geneva), patients were selected with large arterial occlusion on acute imaging and with repeated arterial assessment at 24 hours. Based on a logistic regression analysis, an integer-based score for each covariate of the fitted multivariate model was generated. Performance of integer-based predictive model was assessed by bootstrapping available data and cross validation (delete-d method). In 599 thrombolysed strokes, five variables were identified as independent predictors of absence of recanalisation: Acute glucose > 7 mmol/l (A), significant extracranial vessel STenosis (ST), decreased Range of visual fields (R), large Arterial occlusion (A) and decreased Level of consciousness (L). All variables were weighted 1, except for (L) which obtained 2 points based on β-coefficients on the logistic scale. ASTRAL-R scores 0, 3 and 6 corresponded to non-recanalisation probabilities of 18, 44 and 74 % respectively. Predictive ability showed AUC of 0.66 (95 %CI, 0.61-0.70) when using bootstrap and 0.66 (0.63-0.68) when using delete-d cross validation. In conclusion, the 5-item ASTRAL-R score moderately predicts non-recanalisation at 24 hours in thrombolysed ischaemic strokes. If its performance can be confirmed by external validation and its clinical usefulness can be proven, the score may influence patient selection for more aggressive revascularisation strategies in routine clinical practice.