178 resultados para Leukemia Inhibitory Factor
Resumo:
Immune-endocrine interplay may play a major role in the pathogenesis of endometriosis. In the present study, we have investigated the interaction between macrophage migration inhibitory factor (MIF), a major pro-inflammatory and growth-promoting factor markedly expressed in active endometriotic lesions, and estradiol (E(2)) in ectopic endometrial cells. Our data showed a significant increase of MIF protein secretion and mRNA expression in endometriotic cells in response to E(2). MIF production was blocked by Fulvestrant, an estrogen receptor (ER) antagonist, and induced by ERα and ERβ selective agonists propyl-pyrazole-triol (PPT) and diarylpropionrile (DPN), respectively, thus demonstrating a specific receptor-mediated effect. Cell transfection with MIF promoter construct showed that E(2) significantly stimulates MIF promoter activity. Interestingly, our data further revealed that MIF reciprocally stimulates aromatase protein and mRNA expression via a posttranscriptional mRNA stabilization mechanism, that E(2) itself can upregulate aromatase expression, and that inhibition of endogenous MIF, using MIF specific siRNA, significantly inhibits E(2)-induced aromatase. Thus, the present study revealed the existence of a local positive feedback loop by which estrogen acts directly on ectopic endometrial cells to upregulate the expression of MIF, which, in turn, displays the capability of inducing the expression of aromatase, the key and rate-limiting enzyme for estrogen synthesis. Such interplay may have a considerable impact on the development of endometriosis.
Resumo:
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine produced by many cells and tissues including pancreatic beta-cells, liver, skeletal muscle, and adipocytes. This study investigates the potential role of MIF in carbohydrate homeostasis in a physiological setting outside of severe inflammation, utilizing Mif knockout (MIF-/-) mice. Compared with wild-type (WT) mice, MIF-/- mice had a lower body weight, from birth until 4 months of age, but subsequently gained weight faster, resulting in a higher body weight at 12 months of age. The lower weight in young mice was related to a higher energy expenditure, and the higher weight in older mice was related to an increased food intake and a higher fat mass. Fasting blood insulin level was higher in MIF-/- mice compared with WT mice at any age. After i.p. glucose injection, the elevation of blood insulin level was higher in MIF-/- mice compared with WT mice, at 2 months of age, but was lower in 12-month-old MIF-/- mice. As a result, the glucose clearance during intraperitoneal glucose tolerance tests was higher in MIF-/- mice compared with WT mice until 4 months of age, and was lower in 12-month-old MIF-/- mice. Insulin resistance was estimated (euglycemic-hyperinsulinemic clamp tests), and the phosphorylation activity of AKT was similar in MIF-/- mice and WT mice. In conclusion, this mouse model provides evidence for the role of MIF in the control of glucose homeostasis.
Resumo:
Glioblastoma multiforme (GBM) is the most malignant variant of human glial tumors. A prominent feature of this tumor is the occurrence of necrosis and vascular proliferation. The regulation of glial neovascularization is still poorly understood and the characterization of factors involved in this process is of major clinical interest. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine released by leukocytes and by a variety of cells outside of the immune system. Recent work has shown that MIF may function to regulate cellular differentiation and proliferation in normal and tumor-derived cell lines, and may also contribute to the neovascularization of tumors. Our immunohistological analysis of MIF distribution in GBM tissues revealed the strong MIF protein accumulation in close association with necrotic areas and in tumor cells surrounding blood vessels. In addition, MIF expression was frequently associated with the presence of the tumor-suppressor gene p53. To substantiate the concept that MIF might be involved in the regulation of angiogenesis in GBM, we analyzed the MIF gene and protein expression under hypoxic and hypoglycemic stress conditions in vitro. Northern blot analysis showed a clear increase of MIF mRNA after hypoxia and hypoglycemia. We could also demonstrate that the increase of MIF transcripts on hypoxic stress can be explained by a profound transcriptional activation of the MIF gene. In parallel to the increase of MIF transcripts, we observed a significant rise in extracellular MIF protein on angiogenic stimulation. The data of our preliminary study suggest that the up-regulation of MIF expression during hypoxic and hypoglycemic stress might play a critical role for the neovascularization of glial tumors.
Resumo:
Macrophage migration inhibitory factor (MIF) is a homotrimeric multifunctional proinflammatory cytokine that has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. Current therapeutic strategies for targeting MIF focus on developing inhibitors of its tautomerase activity or modulating its biological activities using anti-MIF neutralizing antibodies. Herein we report a new class of isothiocyanate (ITC)-based irreversible inhibitors of MIF. Modification by benzyl isothiocyanate (BITC) and related analogues occurred at the N-terminal catalytic proline residue without any effect on the oligomerization state of MIF. Different alkyl and arylalkyl ITCs modified MIF with nearly the same efficiency as BITC. To elucidate the mechanism of action, we performed detailed biochemical, biophysical, and structural studies to determine the effect of BITC and its analogues on the conformational state, quaternary structure, catalytic activity, receptor binding, and biological activity of MIF. Light scattering, analytical ultracentrifugation, and NMR studies on unmodified and ITC-modified MIF demonstrated that modification of Pro1 alters the tertiary, but not the secondary or quaternary, structure of the trimer without affecting its thermodynamic stability. BITC induced drastic effects on the tertiary structure of MIF, in particular residues that cluster around Pro1 and constitute the tautomerase active site. These changes in tertiary structure and the loss of catalytic activity translated into a reduction in MIF receptor binding activity, MIF-mediated glucocorticoid overriding, and MIF-induced Akt phosphorylation. Together, these findings highlight the role of tertiary structure in modulating the biochemical and biological activities of MIF and present new opportunities for modulating MIF biological activities in vivo.
Resumo:
Intensive research is devoted to unravel the neurobiological mechanisms mediating adult hippocampal neurogenesis, its regulation by antidepressants, and its behavioral consequences. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that is expressed in the CNS, where its function is unknown. Here, we show, for the first time, the relevance of MIF expression for adult hippocampal neurogenesis. We identify MIF expression in neurogenic cells (in stem cells, cells undergoing proliferation, and in newly proliferated cells undergoing maturation) in the subgranular zone of the rodent dentate gyrus. A causal function for MIF in cell proliferation was shown using genetic (MIF gene deletion) and pharmacological (treatment with the MIF antagonist Iso-1) approaches. Behaviorally, genetic deletion of MIF resulted in increased anxiety- and depression-like behaviors, as well as of impaired hippocampus-dependent memory. Together, our studies provide evidence supporting a pivotal function for MIF in both basal and antidepressant-stimulated adult hippocampal cell proliferation. Moreover, loss of MIF results in a behavioral phenotype that, to a large extent, corresponds with alterations predicted to arise from reduced hippocampal neurogenesis. These findings underscore MIF as a potentially relevant molecular target for the development of treatments linked to deficits in neurogenesis, as well as to problems related to anxiety, depression, and cognition.
Resumo:
Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, is considered an attractive therapeutic target in multiple inflammatory and autoimmune disorders. In addition to its known biologic activities, MIF can also function as a tautomerase. Several small molecules have been reported to be effective inhibitors of MIF tautomerase activity in vitro. Herein we employed a robust activity-based assay to identify different classes of novel inhibitors of the catalytic and biological activities of MIF. Several novel chemical classes of inhibitors of the catalytic activity of MIF with IC(50) values in the range of 0.2-15.5 microm were identified and validated. The interaction site and mechanism of action of these inhibitors were defined using structure-activity studies and a battery of biochemical and biophysical methods. MIF inhibitors emerging from these studies could be divided into three categories based on their mechanism of action: 1) molecules that covalently modify the catalytic site at the N-terminal proline residue, Pro(1); 2) a novel class of catalytic site inhibitors; and finally 3) molecules that disrupt the trimeric structure of MIF. Importantly, all inhibitors demonstrated total inhibition of MIF-mediated glucocorticoid overriding and AKT phosphorylation, whereas ebselen, a trimer-disrupting inhibitor, additionally acted as a potent hyperagonist in MIF-mediated chemotactic migration. The identification of biologically active compounds with known toxicity, pharmacokinetic properties, and biological activities in vivo should accelerate the development of clinically relevant MIF inhibitors. Furthermore, the diversity of chemical structures and mechanisms of action of our inhibitors makes them ideal mechanistic probes for elucidating the structure-function relationships of MIF and to further determine the role of the oligomerization state and catalytic activity of MIF in regulating the function(s) of MIF in health and disease.
Resumo:
BACKGROUND: Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine produced by many tissues including pancreatic beta-cells. METHODS: This study investigates the impact of MIF on islet transplantation using MIF knock-out (MIFko) mice. RESULTS: Early islet function, assessed with a syngeneic marginal islet mass transplant model, was enhanced when using MIFko islets (P<0.05 compared with wild-type [WT] controls). This result was supported by increased in vitro resistance of MIFko islets to apoptosis (terminal deoxynucleotide tranferase-mediated dUTP nick-end labeling assay), and by improved glucose metabolism (lower blood glucose levels, reduced glucose areas under curve and higher insulin release during intraperitoneal glucose challenges, and in vitro in the absence of MIF, P<0.01). The beneficial impact of MIFko islets was insufficient to delay allogeneic islet rejection. However, the rejection of WT islet allografts was marginally delayed in MIFko recipients by 6 days when compared with WT recipient (P<0.05). This effect is supported by the lower activity of MIF-deficient macrophages, assessed in vitro and in vivo by cotransplantation of islet/macrophages. Leukocyte infiltration of the graft and donor-specific lymphocyte activity (mixed lymphocyte reaction, interferon gamma ELISPOT) were similar in both groups. CONCLUSION: These data indicate that targeting MIF has the potential to improve early function after syngeneic islet transplantation, but has only a marginal impact on allogeneic rejection.
Resumo:
BACKGROUND: Macrophage migration inhibitory factor (MIF) has emerged as a pivotal mediator of innate immunity and has been shown to be an important effector molecule in severe sepsis. Melioidosis, caused by Burkholderia pseudomallei, is an important cause of community-acquired sepsis in Southeast-Asia. We aimed to characterize the expression and function of MIF in melioidosis. METHODOLOGY AND PRINCIPAL FINDINGS: MIF expression was determined in leukocytes and plasma from 34 melioidosis patients and 32 controls, and in mice infected with B. pseudomallei. MIF function was investigated in experimental murine melioidosis using anti-MIF antibodies and recombinant MIF. Patients demonstrated markedly increased MIF mRNA leukocyte and MIF plasma concentrations. Elevated MIF concentrations were associated with mortality. Mice inoculated intranasally with B. pseudomallei displayed a robust increase in pulmonary and systemic MIF expression. Anti-MIF treated mice showed lower bacterial loads in their lungs upon infection with a low inoculum. Conversely, mice treated with recombinant MIF displayed a modestly impaired clearance of B. pseudomallei. MIF exerted no direct effects on bacterial outgrowth or phagocytosis of B. pseudomallei. CONCLUSIONS: MIF concentrations are markedly elevated during clinical melioidosis and correlate with patients' outcomes. In experimental melioidosis MIF impaired antibacterial defense.
Resumo:
Considering macrophage migratory inhibitory factor (MIF) as a critical pro-inflammatory cytokine of the immune system, we evaluated plasma MIF levels in 89 HIV-infected adults. Plasma MIF levels were higher in HIV-infected than in HIV-negative individuals. Highest MIF levels were observed during acute HIV infection (AHI) whilst patients on antiretroviral therapy (ART) had lower MIF levels, regardless of ART efficacy. Our results suggest that MIF is an integral component of the cytokine storm characteristic of AHI.
Resumo:
Macrophage migration inhibitory factor (MIF) has recently been implicated in the pathogenesis of malarial anaemia. However, field studies have reported contradictory results on circulating MIF concentrations in patients with clinically overt Plasmodium falciparum malaria. We determined plasma MIF levels over time in 10 healthy volunteers during experimental P. falciparum infection. Under fully controlled conditions, MIF levels decreased significantly during early blood-stage infection and reached a nadir at day 8 post-infection. A decrease in the number of circulating lymphocytes, which are an important source of MIF production, paralleled the decrease in MIF levels. Monocyte/macrophage counts remained unchanged. At MIF nadir, the anti-inflammatory cytokine interleukin (IL)-10, which is an inhibitor of T-cell MIF production, was detectable in only 2 of 10 volunteers. Plasma concentrations of the pro-inflammatory cytokines IL-8 and IL-1beta were only marginally elevated. We conclude that circulating MIF levels decrease early in blood-stage malaria as a result of the decline in circulating lymphocytes.
Resumo:
The role of Wnt antagonists in the carcinogenesis of esophageal adenocarcinoma (EAC) remains unclear. We hypothesized that downregulation of the Wnt inhibitory factor-1 (WIF-1) might be involved in the neoplastic progression of Barrett's esophagus (BE). We analyzed the DNA methylation status of the WIF-1 promoter in normal, preneoplastic, and neoplastic samples from BE patients and in EAC cell lines. We investigated the role of WIF-1 on EAC cell growth and the chemosensitization of the cells to cisplatin. We found that silencing of WIF-1 correlated with promoter hypermethylation. EAC tissue samples showed higher levels of WIF-1 methylation compared to the matched normal epithelium. In addition, we found that WIF-1 hypermethylation was more frequent in BE samples from patients with EAC than in BE samples from patients who had not progressed to EAC. Restoration of WIF-1 in cell lines where WIF-1 was methylation-silenced resulted in growth suppression. Restoration of WIF-1 could sensitize the EAC cells to the chemotherapy drug cisplatin. Our results suggest that silencing of WIF-1 through promoter hypermethylation is an early and common event in the carcinogenesis of BE. Restoring functional WIF-1 might be used as a new targeted therapy for the treatment of this malignancy.
Resumo:
Macrophage migration inhibitory factor (MIF) is an abundantly expressed proinflammatory cytokine playing a critical role in innate immunity and sepsis and other inflammatory diseases. We examined whether functional MIF gene polymorphisms (-794 CATT(5-8) microsatellite and -173 G/C SNP) were associated with the occurrence and outcome of meningococcal disease in children. The CATT(5) allele was associated with the probability of death predicted by the Pediatric Index of Mortality 2 (P=0.001), which increased in correlation with the CATT(5) copy number (P=0.04). The CATT(5) allele, but not the -173 G/C alleles, was also associated with the actual mortality from meningoccal sepsis [OR 2.72 (1.2-6.4), P=0.02]. A family-based association test (i.e., transmission disequilibrium test) performed in 240 trios with 1 afflicted offspring indicated that CATT(5) was a protective allele (P=0.02) for the occurrence of meningococcal disease. At baseline and after stimulation with Neisseria meningitidis in THP-1 monocytic cells or in a whole-blood assay, CATT(5) was found to be a low-expression MIF allele (P=0.005 and P=0.04 for transcriptional activity; P=0.09 and P=0.09 for MIF production). Taken together, these data suggest that polymorphisms of the MIF gene affecting MIF expression are associated with the occurrence, severity, and outcome of meningococcal disease in children.
Resumo:
The vulnerability to infection of newborns is associated with a limited ability to mount efficient immune responses. High concentrations of adenosine and prostaglandins in the fetal and neonatal circulation hamper the antimicrobial responses of newborn immune cells. However, the existence of mechanisms counterbalancing neonatal immunosuppression has not been investigated. Remarkably, circulating levels of macrophage migration inhibitory factor (MIF), a proinflammatory immunoregulatory cytokine expressed constitutively, were 10-fold higher in newborns than in children and adults. Newborn monocytes expressed high levels of MIF and released MIF upon stimulation with Escherichia coli and group B Streptococcus, the leading pathogens of early-onset neonatal sepsis. Inhibition of MIF activity or MIF expression reduced microbial product-induced phosphorylation of p38 and ERK1/2 mitogen-activated protein kinases and secretion of cytokines. Recombinant MIF used at newborn, but not adult, concentrations counterregulated adenosine and prostaglandin E2-mediated inhibition of ERK1/2 activation and TNF production in newborn monocytes exposed to E. coli. In agreement with the concept that once infection is established high levels of MIF are detrimental to the host, treatment with a small molecule inhibitor of MIF reduced systemic inflammatory response, bacterial proliferation, and mortality of septic newborn mice. Altogether, these data provide a mechanistic explanation for how newborns may cope with an immunosuppressive environment to maintain a certain threshold of innate defenses. However, the same defense mechanisms may be at the expense of the host in conditions of severe infection, suggesting that MIF could represent a potential attractive target for immune-modulating adjunctive therapies for neonatal sepsis.
Resumo:
Glycogen is a hallmark of mature astrocytes, but its emergence during astrocytic differentiation is unclear. Differentiation of E14 mouse neurospheres into astrocytes was induced with fetal bovine serum (FBS), Leukemia Inhibitory Factor (LIF), or Ciliary Neurotrophic Factor (CNTF). Cytochemical and enzymatic analyses showed that glycogen is present in FBS- or LIF- but not in CNTF-differentiated astrocytes. Glycogenolysis was induced in FBS- and LIF-differentiated astrocytes but glycogen resynthesis was observed only with FBS. Protein targeting to glycogen mRNA expression appeared with glial fibrillary acidic protein and S100beta in FBS and LIF conditions but not with CNTF. These results show that glycogen metabolism constitutes a useful marker of astrocyte differentiation.