57 resultados para Learning Bayesian Networks
Resumo:
Over the past few decades, age estimation of living persons has represented a challenging task for many forensic services worldwide. In general, the process for age estimation includes the observation of the degree of maturity reached by some physical attributes, such as dentition or several ossification centers. The estimated chronological age or the probability that an individual belongs to a meaningful class of ages is then obtained from the observed degree of maturity by means of various statistical methods. Among these methods, those developed in a Bayesian framework offer to users the possibility of coherently dealing with the uncertainty associated with age estimation and of assessing in a transparent and logical way the probability that an examined individual is younger or older than a given age threshold. Recently, a Bayesian network for age estimation has been presented in scientific literature; this kind of probabilistic graphical tool may facilitate the use of the probabilistic approach. Probabilities of interest in the network are assigned by means of transition analysis, a statistical parametric model, which links the chronological age and the degree of maturity by means of specific regression models, such as logit or probit models. Since different regression models can be employed in transition analysis, the aim of this paper is to study the influence of the model in the classification of individuals. The analysis was performed using a dataset related to the ossifications status of the medial clavicular epiphysis and results support that the classification of individuals is not dependent on the choice of the regression model.
Resumo:
In the past few decades, the rise of criminal, civil and asylum cases involving young people lacking valid identification documents has generated an increase in the demand of age estimation. The chronological age or the probability that an individual is older or younger than a given age threshold are generally estimated by means of some statistical methods based on observations performed on specific physical attributes. Among these statistical methods, those developed in the Bayesian framework allow users to provide coherent and transparent assignments which fulfill forensic and medico-legal purposes. The application of the Bayesian approach is facilitated by using probabilistic graphical tools, such as Bayesian networks. The aim of this work is to test the performances of the Bayesian network for age estimation recently presented in scientific literature in classifying individuals as older or younger than 18 years of age. For these exploratory analyses, a sample related to the ossification status of the medial clavicular epiphysis available in scientific literature was used. Results obtained in the classification are promising: in the criminal context, the Bayesian network achieved, on the average, a rate of correct classifications of approximatively 97%, whilst in the civil context, the rate is, on the average, close to the 88%. These results encourage the continuation of the development and the testing of the method in order to support its practical application in casework.
Resumo:
This paper reports on the purpose, design, methodology and target audience of E-learning courses in forensic interpretation offered by the authors since 2010, including practical experiences made throughout the implementation period of this project. This initiative was motivated by the fact that reporting results of forensic examinations in a logically correct and scientifically rigorous way is a daily challenge for any forensic practitioner. Indeed, interpretation of raw data and communication of findings in both written and oral statements are topics where knowledge and applied skills are needed. Although most forensic scientists hold educational records in traditional sciences, only few actually followed full courses that focussed on interpretation issues. Such courses should include foundational principles and methodology - including elements of forensic statistics - for the evaluation of forensic data in a way that is tailored to meet the needs of the criminal justice system. In order to help bridge this gap, the authors' initiative seeks to offer educational opportunities that allow practitioners to acquire knowledge and competence in the current approaches to the evaluation and interpretation of forensic findings. These cover, among other aspects, probabilistic reasoning (including Bayesian networks and other methods of forensic statistics, tools and software), case pre-assessment, skills in the oral and written communication of uncertainty, and the development of independence and self-confidence to solve practical inference problems. E-learning was chosen as a general format because it helps to form a trans-institutional online-community of practitioners from varying forensic disciplines and workfield experience such as reporting officers, (chief) scientists, forensic coordinators, but also lawyers who all can interact directly from their personal workplaces without consideration of distances, travel expenses or time schedules. In the authors' experience, the proposed learning initiative supports participants in developing their expertise and skills in forensic interpretation, but also offers an opportunity for the associated institutions and the forensic community to reinforce the development of a harmonized view with regard to interpretation across forensic disciplines, laboratories and judicial systems.
Resumo:
Background The 'database search problem', that is, the strengthening of a case - in terms of probative value - against an individual who is found as a result of a database search, has been approached during the last two decades with substantial mathematical analyses, accompanied by lively debate and centrally opposing conclusions. This represents a challenging obstacle in teaching but also hinders a balanced and coherent discussion of the topic within the wider scientific and legal community. This paper revisits and tracks the associated mathematical analyses in terms of Bayesian networks. Their derivation and discussion for capturing probabilistic arguments that explain the database search problem are outlined in detail. The resulting Bayesian networks offer a distinct view on the main debated issues, along with further clarity. Methods As a general framework for representing and analyzing formal arguments in probabilistic reasoning about uncertain target propositions (that is, whether or not a given individual is the source of a crime stain), this paper relies on graphical probability models, in particular, Bayesian networks. This graphical probability modeling approach is used to capture, within a single model, a series of key variables, such as the number of individuals in a database, the size of the population of potential crime stain sources, and the rarity of the corresponding analytical characteristics in a relevant population. Results This paper demonstrates the feasibility of deriving Bayesian network structures for analyzing, representing, and tracking the database search problem. The output of the proposed models can be shown to agree with existing but exclusively formulaic approaches. Conclusions The proposed Bayesian networks allow one to capture and analyze the currently most well-supported but reputedly counter-intuitive and difficult solution to the database search problem in a way that goes beyond the traditional, purely formulaic expressions. The method's graphical environment, along with its computational and probabilistic architectures, represents a rich package that offers analysts and discussants with additional modes of interaction, concise representation, and coherent communication.
Resumo:
In the forensic examination of DNA mixtures, the question of how to set the total number of contributors (N) presents a topic of ongoing interest. Part of the discussion gravitates around issues of bias, in particular when assessments of the number of contributors are not made prior to considering the genotypic configuration of potential donors. Further complication may stem from the observation that, in some cases, there may be numbers of contributors that are incompatible with the set of alleles seen in the profile of a mixed crime stain, given the genotype of a potential contributor. In such situations, procedures that take a single and fixed number contributors as their output can lead to inferential impasses. Assessing the number of contributors within a probabilistic framework can help avoiding such complication. Using elements of decision theory, this paper analyses two strategies for inference on the number of contributors. One procedure is deterministic and focuses on the minimum number of contributors required to 'explain' an observed set of alleles. The other procedure is probabilistic using Bayes' theorem and provides a probability distribution for a set of numbers of contributors, based on the set of observed alleles as well as their respective rates of occurrence. The discussion concentrates on mixed stains of varying quality (i.e., different numbers of loci for which genotyping information is available). A so-called qualitative interpretation is pursued since quantitative information such as peak area and height data are not taken into account. The competing procedures are compared using a standard scoring rule that penalizes the degree of divergence between a given agreed value for N, that is the number of contributors, and the actual value taken by N. Using only modest assumptions and a discussion with reference to a casework example, this paper reports on analyses using simulation techniques and graphical models (i.e., Bayesian networks) to point out that setting the number of contributors to a mixed crime stain in probabilistic terms is, for the conditions assumed in this study, preferable to a decision policy that uses categoric assumptions about N.
Resumo:
Part I of this series of articles focused on the construction of graphical probabilistic inference procedures, at various levels of detail, for assessing the evidential value of gunshot residue (GSR) particle evidence. The proposed models - in the form of Bayesian networks - address the issues of background presence of GSR particles, analytical performance (i.e., the efficiency of evidence searching and analysis procedures) and contamination. The use and practical implementation of Bayesian networks for case pre-assessment is also discussed. This paper, Part II, concentrates on Bayesian parameter estimation. This topic complements Part I in that it offers means for producing estimates useable for the numerical specification of the proposed probabilistic graphical models. Bayesian estimation procedures are given a primary focus of attention because they allow the scientist to combine (his/her) prior knowledge about the problem of interest with newly acquired experimental data. The present paper also considers further topics such as the sensitivity of the likelihood ratio due to uncertainty in parameters and the study of likelihood ratio values obtained for members of particular populations (e.g., individuals with or without exposure to GSR).
Resumo:
This paper focuses on likelihood ratio based evaluations of fibre evidence in cases in which there is uncertainty about whether or not the reference item available for analysis - that is, an item typically taken from the suspect or seized at his home - is the item actually worn at the time of the offence. A likelihood ratio approach is proposed that, for situations in which certain categorical assumptions can be made about additionally introduced parameters, converges to formula described in existing literature. The properties of the proposed likelihood ratio approach are analysed through sensitivity analyses and discussed with respect to possible argumentative implications that arise in practice.
Resumo:
Le travail d'un(e) expert(e) en science forensique exige que ce dernier (cette dernière) prenne une série de décisions. Ces décisions sont difficiles parce qu'elles doivent être prises dans l'inévitable présence d'incertitude, dans le contexte unique des circonstances qui entourent la décision, et, parfois, parce qu'elles sont complexes suite à de nombreuse variables aléatoires et dépendantes les unes des autres. Etant donné que ces décisions peuvent aboutir à des conséquences sérieuses dans l'administration de la justice, la prise de décisions en science forensique devrait être soutenue par un cadre robuste qui fait des inférences en présence d'incertitudes et des décisions sur la base de ces inférences. L'objectif de cette thèse est de répondre à ce besoin en présentant un cadre théorique pour faire des choix rationnels dans des problèmes de décisions rencontrés par les experts dans un laboratoire de science forensique. L'inférence et la théorie de la décision bayésienne satisfont les conditions nécessaires pour un tel cadre théorique. Pour atteindre son objectif, cette thèse consiste de trois propositions, recommandant l'utilisation (1) de la théorie de la décision, (2) des réseaux bayésiens, et (3) des réseaux bayésiens de décision pour gérer des problèmes d'inférence et de décision forensiques. Les résultats présentent un cadre uniforme et cohérent pour faire des inférences et des décisions en science forensique qui utilise les concepts théoriques ci-dessus. Ils décrivent comment organiser chaque type de problème en le décomposant dans ses différents éléments, et comment trouver le meilleur plan d'action en faisant la distinction entre des problèmes de décision en une étape et des problèmes de décision en deux étapes et en y appliquant le principe de la maximisation de l'utilité espérée. Pour illustrer l'application de ce cadre à des problèmes rencontrés par les experts dans un laboratoire de science forensique, des études de cas théoriques appliquent la théorie de la décision, les réseaux bayésiens et les réseaux bayésiens de décision à une sélection de différents types de problèmes d'inférence et de décision impliquant différentes catégories de traces. Deux études du problème des deux traces illustrent comment la construction de réseaux bayésiens permet de gérer des problèmes d'inférence complexes, et ainsi surmonter l'obstacle de la complexité qui peut être présent dans des problèmes de décision. Trois études-une sur ce qu'il faut conclure d'une recherche dans une banque de données qui fournit exactement une correspondance, une sur quel génotype il faut rechercher dans une banque de données sur la base des observations faites sur des résultats de profilage d'ADN, et une sur s'il faut soumettre une trace digitale à un processus qui compare la trace avec des empreintes de sources potentielles-expliquent l'application de la théorie de la décision et des réseaux bayésiens de décision à chacune de ces décisions. Les résultats des études des cas théoriques soutiennent les trois propositions avancées dans cette thèse. Ainsi, cette thèse présente un cadre uniforme pour organiser et trouver le plan d'action le plus rationnel dans des problèmes de décisions rencontrés par les experts dans un laboratoire de science forensique. Le cadre proposé est un outil interactif et exploratoire qui permet de mieux comprendre un problème de décision afin que cette compréhension puisse aboutir à des choix qui sont mieux informés. - Forensic science casework involves making a sériés of choices. The difficulty in making these choices lies in the inévitable presence of uncertainty, the unique context of circumstances surrounding each décision and, in some cases, the complexity due to numerous, interrelated random variables. Given that these décisions can lead to serious conséquences in the admin-istration of justice, forensic décision making should be supported by a robust framework that makes inferences under uncertainty and décisions based on these inferences. The objective of this thesis is to respond to this need by presenting a framework for making rational choices in décision problems encountered by scientists in forensic science laboratories. Bayesian inference and décision theory meets the requirements for such a framework. To attain its objective, this thesis consists of three propositions, advocating the use of (1) décision theory, (2) Bayesian networks, and (3) influence diagrams for handling forensic inference and décision problems. The results present a uniform and coherent framework for making inferences and décisions in forensic science using the above theoretical concepts. They describe how to organize each type of problem by breaking it down into its différent elements, and how to find the most rational course of action by distinguishing between one-stage and two-stage décision problems and applying the principle of expected utility maximization. To illustrate the framework's application to the problems encountered by scientists in forensic science laboratories, theoretical case studies apply décision theory, Bayesian net-works and influence diagrams to a selection of différent types of inference and décision problems dealing with différent catégories of trace evidence. Two studies of the two-trace problem illustrate how the construction of Bayesian networks can handle complex inference problems, and thus overcome the hurdle of complexity that can be present in décision prob-lems. Three studies-one on what to conclude when a database search provides exactly one hit, one on what genotype to search for in a database based on the observations made on DNA typing results, and one on whether to submit a fingermark to the process of comparing it with prints of its potential sources-explain the application of décision theory and influ¬ence diagrams to each of these décisions. The results of the theoretical case studies support the thesis's three propositions. Hence, this thesis présents a uniform framework for organizing and finding the most rational course of action in décision problems encountered by scientists in forensic science laboratories. The proposed framework is an interactive and exploratory tool for better understanding a décision problem so that this understanding may lead to better informed choices.
Resumo:
This paper discusses the analysis of cases in which the inclusion or exclusion of a particular suspect, as a possible contributor to a DNA mixture, depends on the value of a variable (the number of contributors) that cannot be determined with certainty. It offers alternative ways to deal with such cases, including sensitivity analysis and object-oriented Bayesian networks, that separate uncertainty about the inclusion of the suspect from uncertainty about other variables. The paper presents a case study in which the value of DNA evidence varies radically depending on the number of contributors to a DNA mixture: if there are two contributors, the suspect is excluded; if there are three or more, the suspect is included; but the number of contributors cannot be determined with certainty. It shows how an object-oriented Bayesian network can accommodate and integrate varying perspectives on the unknown variable and how it can reduce the potential for bias by directing attention to relevant considerations and distinguishing different sources of uncertainty. It also discusses the challenge of presenting such evidence to lay audiences.
Resumo:
The present paper focuses on the analysis and discussion of a likelihood ratio (LR) development for propositions at a hierarchical level known in the context as 'offence level'. Existing literature on the topic has considered LR developments for so-called offender to scene transfer cases. These settings involve-in their simplest form-a single stain found on a crime scene, but with possible uncertainty about the degree to which that stain is relevant (i.e. that it has been left by the offender). Extensions to multiple stains or multiple offenders have also been reported. The purpose of this paper is to discuss a development of a LR for offence level propositions when case settings involve potential transfer in the opposite direction, i.e. victim/scene to offender transfer. This setting has previously not yet been considered. The rationale behind the proposed LR is illustrated through graphical probability models (i.e. Bayesian networks). The role of various uncertain parameters is investigated through sensitivity analyses as well as simulations.
Resumo:
The success of combination antiretroviral therapy is limited by the evolutionary escape dynamics of HIV-1. We used Isotonic Conjunctive Bayesian Networks (I-CBNs), a class of probabilistic graphical models, to describe this process. We employed partial order constraints among viral resistance mutations, which give rise to a limited set of mutational pathways, and we modeled phenotypic drug resistance as monotonically increasing along any escape pathway. Using this model, the individualized genetic barrier (IGB) to each drug is derived as the probability of the virus not acquiring additional mutations that confer resistance. Drug-specific IGBs were combined to obtain the IGB to an entire regimen, which quantifies the virus' genetic potential for developing drug resistance under combination therapy. The IGB was tested as a predictor of therapeutic outcome using between 2,185 and 2,631 treatment change episodes of subtype B infected patients from the Swiss HIV Cohort Study Database, a large observational cohort. Using logistic regression, significant univariate predictors included most of the 18 drugs and single-drug IGBs, the IGB to the entire regimen, the expert rules-based genotypic susceptibility score (GSS), several individual mutations, and the peak viral load before treatment change. In the multivariate analysis, the only genotype-derived variables that remained significantly associated with virological success were GSS and, with 10-fold stronger association, IGB to regimen. When predicting suppression of viral load below 400 cps/ml, IGB outperformed GSS and also improved GSS-containing predictors significantly, but the difference was not significant for suppression below 50 cps/ml. Thus, the IGB to regimen is a novel data-derived predictor of treatment outcome that has potential to improve the interpretation of genotypic drug resistance tests.
Resumo:
Unlike the evaluation of single items of scientific evidence, the formal study and analysis of the jointevaluation of several distinct items of forensic evidence has to date received some punctual, ratherthan systematic, attention. Questions about the (i) relationships among a set of (usually unobservable)propositions and a set of (observable) items of scientific evidence, (ii) the joint probative valueof a collection of distinct items of evidence as well as (iii) the contribution of each individual itemwithin a given group of pieces of evidence still represent fundamental areas of research. To somedegree, this is remarkable since both, forensic science theory and practice, yet many daily inferencetasks, require the consideration of multiple items if not masses of evidence. A recurrent and particularcomplication that arises in such settings is that the application of probability theory, i.e. the referencemethod for reasoning under uncertainty, becomes increasingly demanding. The present paper takesthis as a starting point and discusses graphical probability models, i.e. Bayesian networks, as frameworkwithin which the joint evaluation of scientific evidence can be approached in some viable way.Based on a review of existing main contributions in this area, the article here aims at presentinginstances of real case studies from the author's institution in order to point out the usefulness andcapacities of Bayesian networks for the probabilistic assessment of the probative value of multipleand interrelated items of evidence. A main emphasis is placed on underlying general patterns of inference,their representation as well as their graphical probabilistic analysis. Attention is also drawnto inferential interactions, such as redundancy, synergy and directional change. These distinguish thejoint evaluation of evidence from assessments of isolated items of evidence. Together, these topicspresent aspects of interest to both, domain experts and recipients of expert information, because theyhave bearing on how multiple items of evidence are meaningfully and appropriately set into context.