255 resultados para LIPID-MOBILIZING FACTOR
Resumo:
Infectious hepatitis C virus (HCV) particle assembly starts at the surface of lipid droplets, cytoplasmic organelles responsible for neutral fat storage. We analysed the relationship between HCV and seipin, a protein involved in lipid droplet maturation. Although seipin overexpression did not affect the total mean volume occupied by lipid droplets nor the total triglyceride and cholesterol ester levels per cell, it caused an increase in the mean diameter of lipid droplets by 60 %, while decreasing their total number per cell. The latter two effects combined resulted in a 34 % reduction of the total outer surface area of lipid droplets per cell, with a proportional decrease in infectious viral particle production, probably due to a defect in particle assembly. These results suggest that the available outer surface of lipid droplets is a critical factor for HCV release, independent of the neutral lipid content of the cell.
Resumo:
BACKGROUND AND AIMS: Formerly obese patients having undergone Roux-en-Y gastric bypass (RYGB) display both an accelerated digestion and absorption of carbohydrate and an increased plasma glucose clearance rate after meal ingestion. How RYGB effects postprandial kinetics of dietary lipids has yet not been investigated. METHODS: Plasma triglyceride (TG), apoB48, total apoB, bile acids (BA), fibroblast growth factor 19 (FGF19), and cholecystokinin (CCK) were measured in post-absorptive conditions and over 4-h following the ingestion of a mixed test meal in a cross-sectional, pilot study involving 11 formerly obese female patients 33.8 ± 16.4 months after RYGB surgery and in 11 weight- and age-matched female control participants. RESULTS: Compared to controls, RYGB patients had faster (254 ± 14 vs. 327 ± 7 min, p < 0.05) and lower (0.14 ± 0.04 vs. 0.35 ± 0.07 mM, p < 0.05) peak TG responses, but their peak apoB48 responses tended to be higher (2692 ± 336 vs. 1841 ± 228 ng/ml, p = 0.09). Their postprandial total BA concentrations were significantly increased and peaked earlier after meal ingestion than in controls. Their FGF19 and CCK concentrations also peaked earlier and to a higher value. CONCLUSIONS: The early postprandial apoB48 and BA responses indicate that RYGB accelerated the rate of dietary lipid absorption. The lower postprandial peak TG strongly suggests that the RYGB simultaneously increased the clearance of TG-rich lipoproteins. CLINICAL TRIAL REGISTRATION: NCT01891591.
Resumo:
RORα is a retinoid-related orphan nuclear receptor that regulates inflammation, lipid metabolism, and cellular differentiation of several non-epithelial tissues. In spite of its high expression in skin epithelium, its functions in this tissue remain unclear. Using gain- and loss-of-function approaches to alter RORα gene expression in human keratinocytes (HKCs), we have found that this transcription factor functions as a regulator of epidermal differentiation. Among the 4 RORα isoforms, RORα4 is prominently expressed by keratinocytes in a manner that increases with differentiation. In contrast, RORα levels are significantly lower in skin squamous cell carcinoma tumors (SCCs) and cell lines. Increasing the levels of RORα4 in HKCs enhanced the expression of structural proteins associated with early and late differentiation, as well as genes involved in lipid barrier formation. Gene silencing of RORα impaired the ability of keratinocytes to differentiate in an in vivo epidermal cyst model. The pro-differentiation function of RORα is mediated at least in part by FOXN1, a well-known pro-differentiation transcription factor that we establish as a novel direct target of RORα in keratinocytes. Our results point to RORα as a novel node in the keratinocyte differentiation network and further suggest that the identification of RORα ligands may prove useful for treating skin disorders that are associated with abnormal keratinocyte differentiation, including cancer.
Resumo:
Transforming growth factor beta (TGF-beta) and platelet-derived growth factor A (PDGFAlpha) play a central role in tissue morphogenesis and repair, but their interplay remain poorly understood. The nuclear factor I C (NFI-C) transcription factor has been implicated in TGF-beta signaling, extracellular matrix deposition, and skin appendage pathologies, but a potential role in skin morphogenesis or healing had not been assessed. To evaluate this possibility, we performed a global gene expression analysis in NFI-C(-/-) and wild-type embryonic primary murine fibroblasts. This indicated that NFI-C acts mostly to repress gene expression in response to TGF-beta1. Misregulated genes were prominently overrepresented by regulators of connective tissue inflammation and repair. In vivo skin healing revealed a faster inflammatory stage and wound closure in NFI-C(-/-) mice. Expression of PDGFA and PDGF-receptor alpha were increased in wounds of NFI-C(-/-) mice, explaining the early recruitment of macrophages and fibroblasts. Differentiation of fibroblasts to contractile myofibroblasts was also elevated, providing a rationale for faster wound closure. Taken together with the role of TGF-beta in myofibroblast differentiation, our results imply a central role of NFI-C in the interplay of the two signaling pathways and in regulation of the progression of tissue regeneration.
Resumo:
Macrophage migration inhibitory factor (MIF), originally identified as a cytokine secreted by T lymphocytes, was found recently to be both a pituitary hormone and a mediator released by immune cells in response to glucocorticoid stimulation. We report here that the insulin-secreting beta cell of the islets of Langerhans expresses MIF and that its production is regulated by glucose in a time- and concentration-dependent manner. MIF and insulin colocalize by immunocytochemistry within the secretory granules of the pancreatic islet beta cells, and once released, MIF appears to regulate insulin release in an autocrine fashion. In perifusion studies performed with isolated rat islets, immunoneutralization of MIF reduced the first and second phase of the glucose-induced insulin secretion response by 39% and 31%, respectively. Conversely, exogenously added recombinant MIF was found to potentiate insulin release. Constitutive expression of MIF antisense RNA in the insulin-secreting INS-1 cell line inhibited MIF protein synthesis and decreased significantly glucose-induced insulin release. MIF is therefore a glucose-dependent, islet cell product that regulates insulin secretion in a positive manner and may play an important role in carbohydrate metabolism.
Resumo:
PURPOSE OF REVIEW: Amplification and overexpression of the epidermal growth factor receptor (EGFR) gene are a hallmark of primary glioblastoma (45%), making it a prime target for therapy. In addition, these amplifications are frequently associated with oncogenic mutations in the extracellular domain. However, efforts at targeting the EGFR tyrosine kinase using small molecule inhibitors or antibodies have shown disappointing efficacy in clinical trials for newly diagnosed or recurrent glioblastoma. Here, we review recent insights into molecular mechanisms relevant for effective targeting of the EGFR pathway. RECENT FINDINGS: Molecular workup of glioblastoma tissue of patients under treatment with small molecule inhibitors has established drug concentrations in the tumor tissue, and has shed light on the effectiveness of target inhibition and respective effects on pathway signaling. Further, functional analyses of interaction of small molecule inhibitors with distinct properties to bind to the active or inactive form of EGFR have provided new insights that will impact the choice of drugs. Finally, vaccination approaches targeting the EGFRvIII mutant featuring a tumor-specific antigen have shown promising results that warrant larger controlled clinical trials. SUMMARY: A combination of preclinical and clinical studies at the molecular level has provided new insights that will allow refining strategies for targeting the EGFR pathway in glioblastoma.
Resumo:
Staphylococcus aureus harbors redundant adhesins mediating tissue colonization and infection. To evaluate their intrinsic role outside of the staphylococcal background, a system was designed to express them in Lactococcus lactis subsp. cremoris 1363. This bacterium is devoid of virulence factors and has a known genetic background. A new Escherichia coli-L. lactis shuttle and expression vector was constructed for this purpose. First, the high-copy-number lactococcal plasmid pIL253 was equipped with the oriColE1 origin, generating pOri253 that could replicate in E. coli. Second, the lactococcal promoters P23 or P59 were inserted at one end of the pOri253 multicloning site. Gene expression was assessed by a luciferase reporter system. The plasmid carrying P23 (named pOri23) expressed luciferase constitutively at a level 10,000 times greater than did the P59-containing plasmid. Transcription was absent in E. coli. The staphylococcal clumping factor A (clfA) gene was cloned into pOri23 and used as a model system. Lactococci carrying pOri23-clfA produced an unaltered and functional 130-kDa ClfA protein attached to their cell walls. This was indicated both by the presence of the protein in Western blots of solubilized cell walls and by the ability of ClfA-positive lactococci to clump in the presence of plasma. ClfA-positive lactococci had clumping titers (titer of 4,112) similar to those of S. aureus Newman in soluble fibrinogen and bound equally well to solid-phase fibrinogen. These experiments provide a new way to study individual staphylococcal pathogenic factors and might complement both classical knockout mutagenesis and modern in vivo expression technology and signature tag mutagenesis.
Resumo:
Background: Leptin is produced primarily by adipocytes. Although originally associated with the central regulation of satiety and energy metabolism, increasing evidence indicates that leptin may be an important factor for congestive heart faire (CHF). In the study, we aimed to test the hypothesis that leptin may influence CHF pathophysiology via a pathway of increasing body mass index (BMI). Methods: We studied 2,389 elderly participants aged 70 and older (M; 1161, F: 1228) without CHF and with serum leptin measures at the Health Aging, and Body Composition study. We analyzed the association between serum leptin level and risk of incident CHF using Cox hazard proportional regression models. Elevated leptin level was defined as more than the highest quartile (Q4) of leptin distribution in the total sample for each gender. Adjusted-covariates included demographic, behavior, lipid and inflammation variables (partially-adjusted models), and further included BMI (fully-adjusted models). Results: In a mean 9-year follow-up, 316 participants (13.2%) developed CHF. The partially-adjusted models indicated that men and women with elevated serum leptin levels (>=9.89 ng/ml in men and >=25 ng/ml in women) had significantly higher risks of developing CHF than those with leptin level of less than Q4. The adjusted hazard ratios (95%CI) for incident CHF was 1.49 (1.04 -2.13) in men and 1.71 (1.12 -2.58) in women. However, these associations became non-significant after adjustment for including BMI for each gender. The fully-adjusted hazard ratios (95%CI) were 1.43 (0.94 -2.18) in men and 1.24 (0.77-1.99) in women. Conclusion: Subjects with elevated leptin levels have a higher risk of CHF. The study supports the hypothesis that the influence of leptin level on risk of CHF may be through a pathway related to increasing BMI.
Resumo:
Cellular responses to LPS, the major lipid component of the outer membrane of Gram-negative bacteria, are enhanced markedly by the LPS-binding protein (LBP), a plasma protein that transfers LPS to the cell surface CD14 present on cells of the myeloid lineage. LBP has been shown previously to potentiate the host response to LPS. However, experiments performed in mice with a disruption of the LBP gene have yielded discordant results. Whereas one study showed that LBP knockout mice were resistant to endotoxemia, another study did not confirm an important role for LBP in the response of mice challenged in vivo with low doses of LPS. Consequently, we generated rat mAbs to murine LBP to investigate further the contribution of LBP in experimental endotoxemia. Three classes of mAbs were obtained. Class 1 mAbs blocked the binding of LPS to LBP; class 2 mAbs blocked the binding of LPS/LBP complexes to CD14; class 3 mAbs bound LBP but did not suppress LBP activity. In vivo, class 1 and class 2 mAbs suppressed LPS-induced TNF production and protected mice from lethal endotoxemia. These results show that the neutralization of LBP accomplished by blocking either the binding of LPS to LBP or the binding of LPS/LBP complexes to CD14 protects the host from LPS-induced toxicity, confirming that LBP is a critical component of innate immunity.
Resumo:
Activation of dendritic cells (DC) by microbial products via Toll-like receptors (TLR) is instrumental in the induction of immunity. In particular, TLR signaling plays a major role in the instruction of Th1 responses. The development of Th2 responses has been proposed to be independent of the adapter molecule myeloid differentiation factor 88 (MyD88) involved in signal transduction by TLRs. In this study we show that flagellin, the bacterial stimulus for TLR5, drives MyD88-dependent Th2-type immunity in mice. Flagellin promotes the secretion of IL-4 and IL-13 by Ag-specific CD4(+) T cells as well as IgG1 responses. The Th2-biased responses are associated with the maturation of DCs, which are shown to express TLR5. Flagellin-mediated DC activation requires MyD88 and induces NF-kappaB-dependent transcription and the production of low levels of proinflammatory cytokines. In addition, the flagellin-specific response is characterized by the lack of secretion of the Th1-promoting cytokine IL-12 p70. In conclusion, this study suggests that flagellin and, more generally, TLR ligands can control Th2 responses in a MyD88-dependent manner.
Resumo:
BACKGROUND: Excision and primary midline closure for pilonidal disease (PD) is a simple procedure; however, it is frequently complicated by infection and prolonged healing. The aim of this study was to analyze risk factors for surgical site infection (SSI) in this context. METHODS: All consecutive patients undergoing excision and primary closure for PD from January 2002 through October 2008 were retrospectively assessed. The end points were SSI, as defined by the Center for Disease Control, and time to healing. Univariable and multivariable risk factor analyses were performed. RESULTS: One hundred thirty-one patients were included [97 men (74%), median age = 24 (range 15-66) years]. SSI occurred in 41 (31%) patients. Median time to healing was 20 days (range 12-76) in patients without SSI and 62 days (range 20-176) in patients with SSI (P < 0.0001). In univariable and multivariable analyses, smoking [OR = 2.6 (95% CI 1.02, 6.8), P = 0.046] and lack of antibiotic prophylaxis [OR = 5.6 (95% CI 2.5, 14.3), P = 0.001] were significant predictors for SSI. Adjusted for SSI, age over 25 was a significant predictor of prolonged healing. CONCLUSION: This study suggests that the rate of SSI after excision and primary closure of PD is higher in smokers and could be reduced by antibiotic prophylaxis. SSI significantly prolongs healing time, particularly in patients over 25 years.
Resumo:
The liver secretes triglyceride-rich VLDLs, and the triglycerides in these particles are taken up by peripheral tissues, mainly heart, skeletal muscle, and adipose tissue. Blocking hepatic VLDL secretion interferes with the delivery of liver-derived triglycerides to peripheral tissues and results in an accumulation of triglycerides in the liver. However, it is unclear how interfering with hepatic triglyceride secretion affects adiposity, muscle triglyceride stores, and insulin sensitivity. To explore these issues, we examined mice that cannot secrete VLDL [due to the absence of microsomal triglyceride transfer protein (Mttp) in the liver]. These mice exhibit markedly reduced levels of apolipoprotein B-100 in the plasma, along with reduced levels of triglycerides in the plasma. Despite the low plasma triglyceride levels, triglyceride levels in skeletal muscle were unaffected. Adiposity and adipose tissue triglyceride synthesis rates were also normal, and body weight curves were unaffected. Even though the blockade of VLDL secretion caused hepatic steatosis accompanied by increased ceramides and diacylglycerols in the liver, the mice exhibited normal glucose tolerance and were sensitive to insulin at the whole-body level, as judged by hyperinsulinemic euglycemic clamp studies. Normal hepatic glucose production and insulin signaling were also maintained in the fatty liver induced by Mttp deletion. Thus, blocking VLDL secretion causes hepatic steatosis without insulin resistance, and there is little effect on muscle triglyceride stores or adiposity