76 resultados para Johnson, Orval
Resumo:
Pachydermoperiostosis, or primary hypertrophic osteoarthropathy (PHO), is an inherited multisystem disorder, whose features closely mimic the reactive osteoarthropathy that commonly accompanies neoplastic and inflammatory pathologies. We previously described deficiency of the prostaglandin-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (HPGD) as a cause of this condition, implicating elevated circulating prostaglandin E(2) (PGE(2) ) as causative of PHO, and perhaps also as the principal mediator of secondary HO. However, PHO is genetically heterogeneous. Here, we use whole-exome sequencing to identify recessive mutations of the prostaglandin transporter SLCO2A1, in individuals lacking HPGD mutations. We performed exome sequencing of four probands with severe PHO, followed by conventional mutation analysis of SLCO2A1 in nine others. Biallelic SLCO2A1 mutations were identified in 12 of the 13 families. Affected individuals had elevated urinary PGE(2) , but unlike HPGD-deficient patients, also excreted considerable quantities of the PGE(2) metabolite, PGE-M. Clinical differences between the two groups were also identified, notably that SLCO2A1-deficient individuals have a high frequency of severe anemia due to myelofibrosis. These findings reinforce the key role of systemic or local prostaglandin excess as the stimulus to HO. They also suggest that the induction or maintenance of hematopoietic stem cells by prostaglandin may depend upon transporter activity. Hum Mutat 33:1175-1181, 2012. © 2012 Wiley Periodicals, Inc.
Resumo:
Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10(-8)-1.2×10(-43)). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10(-4)). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10(-3), n = 22,044), increased triglycerides (p = 2.6×10(-14), n = 93,440), increased waist-to-hip ratio (p = 1.8×10(-5), n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10(-3), n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5×10(-13), n = 96,748) and decreased BMI (p = 1.4×10(-4), n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.
Resumo:
Human genetic variation contributes to differences in susceptibility to HIV-1 infection. To search for novel host resistance factors, we performed a genome-wide association study (GWAS) in hemophilia patients highly exposed to potentially contaminated factor VIII infusions. Individuals with hemophilia A and a documented history of factor VIII infusions before the introduction of viral inactivation procedures (1979-1984) were recruited from 36 hemophilia treatment centers (HTCs), and their genome-wide genetic variants were compared with those from matched HIV-infected individuals. Homozygous carriers of known CCR5 resistance mutations were excluded. Single nucleotide polymorphisms (SNPs) and inferred copy number variants (CNVs) were tested using logistic regression. In addition, we performed a pathway enrichment analysis, a heritability analysis, and a search for epistatic interactions with CCR5 Δ32 heterozygosity. A total of 560 HIV-uninfected cases were recruited: 36 (6.4%) were homozygous for CCR5 Δ32 or m303. After quality control and SNP imputation, we tested 1 081 435 SNPs and 3686 CNVs for association with HIV-1 serostatus in 431 cases and 765 HIV-infected controls. No SNP or CNV reached genome-wide significance. The additional analyses did not reveal any strong genetic effect. Highly exposed, yet uninfected hemophiliacs form an ideal study group to investigate host resistance factors. Using a genome-wide approach, we did not detect any significant associations between SNPs and HIV-1 susceptibility, indicating that common genetic variants of major effect are unlikely to explain the observed resistance phenotype in this population.
Resumo:
Adult height is a model polygenic trait, but there has been limited success in identifying the genes underlying its normal variation. To identify genetic variants influencing adult human height, we used genome-wide association data from 13,665 individuals and genotyped 39 variants in an additional 16,482 samples. We identified 20 variants associated with adult height (P < 5 x 10(-7), with 10 reaching P < 1 x 10(-10)). Combined, the 20 SNPs explain approximately 3% of height variation, with a approximately 5 cm difference between the 6.2% of people with 17 or fewer 'tall' alleles compared to the 5.5% with 27 or more 'tall' alleles. The loci we identified implicate genes in Hedgehog signaling (IHH, HHIP, PTCH1), extracellular matrix (EFEMP1, ADAMTSL3, ACAN) and cancer (CDK6, HMGA2, DLEU7) pathways, and provide new insights into human growth and developmental processes. Finally, our results provide insights into the genetic architecture of a classic quantitative trait.
Resumo:
To identify previously unknown genetic loci associated with fasting glucose concentrations, we examined the leading association signals in ten genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95% CI = 0.06-0.08) mmol/l in fasting glucose levels (P = 3.2 x 10(-50)) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P = 1.1 x 10(-15)). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05-1.12), per G allele P = 3.3 x 10(-7)) in a meta-analysis of 13 case-control studies totaling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P = 1.1 x 10(-57)) and GCK (rs4607517, P = 1.0 x 10(-25)) loci.
Resumo:
Ants are some of the most abundant and familiar animals on Earth, and they play vital roles in most terrestrial ecosystems. Although all ants are eusocial, and display a variety of complex and fascinating behaviors, few genomic resources exist for them. Here, we report the draft genome sequence of a particularly widespread and well-studied species, the invasive Argentine ant (Linepithema humile), which was accomplished using a combination of 454 (Roche) and Illumina sequencing and community-based funding rather than federal grant support. Manual annotation of >1,000 genes from a variety of different gene families and functional classes reveals unique features of the Argentine ant's biology, as well as similarities to Apis mellifera and Nasonia vitripennis. Distinctive features of the Argentine ant genome include remarkable expansions of gustatory (116 genes) and odorant receptors (367 genes), an abundance of cytochrome P450 genes (>110), lineage-specific expansions of yellow/major royal jelly proteins and desaturases, and complete CpG DNA methylation and RNAi toolkits. The Argentine ant genome contains fewer immune genes than Drosophila and Tribolium, which may reflect the prominent role played by behavioral and chemical suppression of pathogens. Analysis of the ratio of observed to expected CpG nucleotides for genes in the reproductive development and apoptosis pathways suggests higher levels of methylation than in the genome overall. The resources provided by this genome sequence will offer an abundance of tools for researchers seeking to illuminate the fascinating biology of this emerging model organism.
Resumo:
Background: EATL is a rare subtype of peripheral T-cell lymphomas characterized by primarily intestinal localization and a frequent association with celiac disease. The prognosis is considered to be poor with conventional chemotherapy. Limited data is available on the efficacy of ASCT in this lymphoma subtype. Primary objective: was to study the outcome of ASCT as a consolidation or salvage strategy for EATL. The primary endpoint was overall survival (OS) and progression-free survival (PFS). Eligible patients were > 18 years who had received ASCT between 2000-2010 for EATL that was confirmed by review of written histopathology reports, and had sufficient information on disease history and follow-up available. The search strategy used the EBMT database to identify patients potentially fulfilling the eligibility criteria. An additional questionnaire was sent to individual transplant centres to confirm histological diagnosis (histopathology report or pathology review) as well as updated follow-up data. Patients and transplant characteristics were compared between groups using X2 test or Fisher's exact test for categorical variables and t-test or Mann-Whiney U-test for continuous variables. OS and PFS were estimated using the Kaplan-Meier product-limit estimate and compared by the log-rank test. Estimates for non-relapse mortality (NRM) and relapse or progression were calculated using cumulative incidence rates to accommodate competing risk and compared to Gray's test. Results: Altogether 138 patients were identified. Updated follow-up data was received from 74 patients (54 %) and histology report from 54 patients (39 %). In ten patients the diagnosis of EATL could not be adequately verified. Thus the final analysis included 44. There were 24 males and 20 females with a median age of 56 (35-72) years at the time of transplant. Twenty-five patients (57 %) had a history of celiac disease. Disease stage was I in nine patients (21 %), II in 14 patients (33 %) and IV in 19 patients (45 %). Twenty-four patients (55 %) were in the first CR or PR at the time of transplant. BEAM was used as a high-dose regimen in 36 patients (82 %) and all patients received peripheral blood grafts. The median follow-up for survivors was 46 (2-108) months from ASCT. Three patients died early from transplant-related reasons translating into a 2-year non-relapse mortality of 7 %. Relapse incidence at 4 years after ASCT was 39 %, with no events occurring beyond 2.5 years after ASCT. PFS and OS were 54 % and 59 % at four years, respectively. There was a trend for better OS in patients transplanted in the first CR or PR compared to more advanced disease status (70 % vs. 43 %, p=0.053). Of note, patients with a history of celiac disease had superior PFS (70 % vs. 35 %, p=0.02) and OS (70 % vs. 45 %, p=0.052) whilst age, gender, disease stage, B-symptoms at diagnosis or high-dose regimen were not associated with OS or PFS. Conclusions: This study shows for the first time in a larger patient sample that ASCT is feasible in selected patients with EATL and can yield durable disease control in a significant proportion of the patients. Patients transplanted in first CR or PR appear to do better than those transplanted later. ASCT should be considered in EATL patients responding to initial therapy.
Resumo:
Despite the presence of tumor-specific effector cells in the circulation of cancer patients, the immune response of the majority of these patients is not sufficient to prevent the growth and spread of their tumors. That tumor cells can be killed in vitro by tumor-reactive cytotoxic T cells is testimony to the fact that the tumors are not inherently resistant to T cell killing, but rather that there is a failure in immune recognition and effector cell activation. Many reasons for this failure of the body's defense system have been suggested, including the inability of tumor-reactive lymphocytes to migrate to tumor tissue. Here we designed a strategy to improve homing of primary lymphocytes into vascularized tumors. As a homing molecule we selected the integrin alpha v beta 3 since it is expressed by angiogenic vascular endothelium in tumors. To promote lymphocyte adhesion to alpha v beta 3 we "painted" primary lymphocytes with a recombinant, glycosylphosphatidylinositol-linked high-affinity ligand for alpha v beta 3. These painted lymphocytes specifically bound to alpha v beta 3 in vitro and homed to vascularized, solid tumors in vivo. This novel strategy may provide a significant advance in anti-tumor treatment such as adoptive immune therapy.
Resumo:
OBJECTIVE: A large body of epidemiologic data strongly suggests an association between excess adiposity and coronary artery disease (CAD). Low adiponectin levels, a hormone secreted only from adipocytes, have been associated with an increased risk of CAD in observational studies. However, these associations cannot clarify whether this relationship is causal or due to a shared set of causal factors or even confounding. Genome-wide association studies have identified common variants that influence adiponectin levels, providing valuable tools to examine the genetic relationship between adiponectin and CAD. METHODS: Using 145 genome wide significant SNPs for adiponectin from the ADIPOGen consortium (n = 49,891), we tested whether adiponectin-decreasing alleles influenced risk of CAD in the CARDIoGRAM consortium (n = 85,274). RESULTS: In single-SNP analysis, 5 variants among 145 SNPs were associated with increased risk of CAD after correcting for multiple testing (P < 4.4 × 10(-4)). Using a multi-SNP genotypic risk score to test whether adiponectin levels and CAD have a shared genetic etiology, we found that adiponectin-decreasing alleles increased risk of CAD (P = 5.4 × 10(-7)). CONCLUSION: These findings demonstrate that adiponectin levels and CAD have a shared allelic architecture and provide rationale to undertake a Mendelian randomization studies to understand if this relationship is causal.
Resumo:
The molecular mechanisms underlying lymphocyte extravasation remain poorly characterized. We have recently identified junctional adhesion molecule-2 (JAM-2), and have shown that antibodies to JAM-2 stain high endothelial venules (HEVs) within lymph nodes and Peyer patches of adult mice. Here we show that mouse lymphocytes migrate in greater numbers across monolayers of endothelioma cells transfected with JAM-2. The significance of these findings to an understanding of both normal and pathologic lymphocyte extravasation prompted us to clone the human homologue of JAM-2. We herein demonstrate that an anti-JAM-2 antibody, or a soluble JAM-2 molecule, blocks the transmigration of primary human peripheral blood leukocytes across human umbilical vein endothelial cells expressing endogenous JAM-2. Furthermore, we show that JAM-2 is expressed on HEVs in human tonsil and on a subset of human leukocytes, suggesting that JAM-2 plays a central role in the regulation of transendothelial migration.
Resumo:
Interpretability and power of genome-wide association studies can be increased by imputing unobserved genotypes, using a reference panel of individuals genotyped at higher marker density. For many markers, genotypes cannot be imputed with complete certainty, and the uncertainty needs to be taken into account when testing for association with a given phenotype. In this paper, we compare currently available methods for testing association between uncertain genotypes and quantitative traits. We show that some previously described methods offer poor control of the false-positive rate (FPR), and that satisfactory performance of these methods is obtained only by using ad hoc filtering rules or by using a harsh transformation of the trait under study. We propose new methods that are based on exact maximum likelihood estimation and use a mixture model to accommodate nonnormal trait distributions when necessary. The new methods adequately control the FPR and also have equal or better power compared to all previously described methods. We provide a fast software implementation of all the methods studied here; our new method requires computation time of less than one computer-day for a typical genome-wide scan, with 2.5 M single nucleotide polymorphisms and 5000 individuals.
Resumo:
Phylogenetic reconstructions of transmission events from individuals with acute human immunodeficiency virus (HIV) infection are conducted to illustrate this group's heightened infectivity. Varied definitions of acute infection and assumptions about observed phylogenetic clusters may produce misleading results. We conducted a phylogenetic analysis of HIV pol sequences from 165 European patients with estimated infection dates and calculated the difference between dates within clusters. Nine phylogenetic clusters were observed. Comparison of dates within clusters revealed that only 2 could have been generated during acute infection. Previous analyses may have incorrectly assigned transmission events to the acutely HIV infected when they were more likely to have occurred during chronic infection.