26 resultados para Jocassee, Lake (S.C.)--Periodicals


Relevância:

30.00% 30.00%

Publicador:

Resumo:

New isotopic results on bulk carbonate and mollusc (gastropods and bivalves) samples from Lake Geneva (Switzerland), spanning the period from the Oldest Dryas to the present day, are compared with pre-existing stable isotope data. According to preliminary calibration of modern samples, Lake Geneva endogenic calcite precipitates at or near oxygen isotopic equilibrium with ambient water, confirming the potential of this large lake to record paleoenvironmental and paleoclimatic changes. The onset of endogenic calcite precipitation at the beginning of the Allerod biozone is clearly indicated by the oxygen isotopic signature of bulk carbonate. A large change in delta(13)C values occurs during the Preboreal. This carbon shift is likely to be due to a change in bioproductivity and/or to a `'catchment effect'', the contribution of biogenic CO2 from the catchment area to the dissolved inorganic carbon reservoir of the lake water becoming significant only during the Preboreal. Gastropods are confirmed as valuable for studies of changes in paleotemperature and in paleowater isotopic composition, despite the presence of a vital effect. Mineralogical evidence indicates an increased detrital influence upon sedimentation since the Subboreal time period. On the other hand, stable isotope measurements of Subatlantic carbonate sediments show values comparable to those of pure endogenic calcite and of gastropods (taking into account the vital effect). This apparent disagreement still remains difficult to explain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isotopic analyses on bulk carbonates are considered a useful tool for palaeoclimatic reconstruction assuming calcite precipitation occurring at oxygen isotope equilibrium with local water and detrital carbonate input being absent or insignificant. We present results from Lake Neuchatel (western Switzerland) that demonstrate equilibrium precipitation of calcite, except during high productivity periods, and the presence of detrital and resuspended calcite. Mineralogy, geochemistry and stable isotope values of Lake Neuchatel trap sediments and adjacent rivers suspension were studied. Mineralogy of suspended matter in the major inflowing rivers documents an important contribution of detrital carbonates, predominantly calcite with minor amounts of dolomite and ankerite. Using mineralogical data, the quantity of allochthonous calcite can be estimated by comparing the ratio ankerite + dolomite/calcite + ankerite + dolomite in the inflowing rivers and in the traps. Material taken from sediment traps shows an evolution from practically pure endogenic calcite in summer (10-20% detrital material) to higher percentages of detrital material in winter (up to 20-40%). Reflecting these mineralogical variations, delta(13)C and delta(18)O values of calcite from sediment traps are more negative in summer than in winter times. Since no significant variations in isotopic composition of lake water were detected over one year, factors controlling oxygen isotopic composition of calcite in sediment traps are the precipitation temperature, and the percentage of resuspended and detrital calcite. Samples taken close to the river inflow generally have higher delta values than the others, confirming detrital influence. SEM and isotopic studies on different size fractions (<2, 2-6, 6-20, 20-60, >60 mu m) of winter and summer samples allowed the recognition of resuspension and to separate new endogenic calcite from detrital calcite. Fractions >60 and (2 mu m have the highest percentage of detritus, Fractions 2-6 and 6-20 mu m are typical for the new endogenic calcite in summer, as given by calculations assuming isotopic equilibrium with local water. In winter such fractions show similar values than in summer, indicating resuspension. Using the isotopic composition of sediment traps material and of different size fractions, as well as the isotopic composition of lake water, the water temperature measurements and mineralogy, we re-evaluated the bulk carbonate potential for palaeoclimatic reconstruction in the presence of detrital and re-suspended calcite. This re-evaluation leads to the following conclusion: (1) the endogenic signal can be amplified by applying a particle-size separation, once the size of endogenic calcite is known from SEM study; (2) resuspended calcite does not alter the endogenic signal, but it lowers the time resolution; (3) detrital input decreases at increasing distances from the source, and it modifies the isotopic signal only when very abundant; (4) influence of detrital calcite on bulk sediment isotopic composition can be calculated. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the sedimentological and geochemical changes that occurred during the last 2200 years in the meromictic Lake Lucerne (Switzerland), one of the largest freshwater lakes of Central Europe. The stable isotope composition (delta C-13 and delta O-18 values) of bulk carbonates is compared to changes in grain-size distribution (clay and silt fraction), natural trace element input (titanium and thorium concentrations), and organic material abundance (C-org, nitrogen and phosphorus) and composition (C/N ratios and hydrogen and oxygen indexes). A drop in carbonate accumulation and in the delta O-18 values of sediments between ca. AD 500 and 700 followed a large and consistent rise in chemical weathering, marked by increases in the silicate-clay fraction and in crustal element concentrations. During the following millennium, there was a long-term decreasing trend in the lithogenic trace element input and in the phosphorus loading, suggesting decreasing terrigeneous input from runoff water. The major sedimentological change over the studied period occurred after ca. AD 1800 with a significant increase in the erosion-driven silt-fraction and in the sedimentation rate. During the last century, human-induced increase in nutrient input to the lake highly enhanced the accumulation of organic matter in sediment. Changes in nutrients and oxygen conditions in the hypolimnion of Lake Lucerne during the eutrophication period (i.e., the last 40 years) highly modified the geochemical fluxes compared to the relatively stable oligotrophic conditions that prevailed during the previous 2000 years. Before the 19th century, climate driven meromixis had a limited impact on the organic matter flux to the sediments, but the accumulation of carbonate considerably decreased during periods of lower mechanical erosion rates and high chemical weathering rates. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In August 2008, reactivation of the Little Salmon Lake landslide occurred. During this event, hundreds of conical mounds of variable size and composition formed in the deposition zone. The characteristics of these landforms are described and a potential mechanism for their formation is proposed. A preliminary slope stability analysis of the 2007 Mount Steele rock and ice avalanche was also undertaken. The orientation of very high persistence (>20 m long) structural planes (e.g., faults, joints and bedding) within bedrock in the source zone was obtained using an airborne-LiDAR digital elevation model and the software COLTOP-3D. Using these discontinuity orientation measurements, kinematic, surface wedge and simple three-dimensional distinct element slope stability analyses were performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colour pattern diversity can be due to random processes or to natural or sexual selection. Consequently, similarities in colour patterns are not always correlated with common ancestry, but may result from convergent evolution under shared selection pressures or drift. Neolamprologus brichardi and Neolamprologus pulcher have been described as two distinct species based on differences in the arrangement of two dark bars on the operculum. Our study uses DNA sequences of the mitochondrial control region to show that relatedness of haplotypes disagrees with species assignment based on head colour pattern. This suggests repeated parallel evolution of particular stripe patterns. The complete lack of shared haplotypes between populations of the same or different phenotypes reflects strong philopatric behaviour, possibly induced by the cooperative breeding mode in which offspring remain in their natal territory and serve as helpers until they disperse to nearby territories or take over a breeding position. Concordant phylogeographic patterns between N. brichardi/N. pulcher populations and other rock-dwelling cichlids suggest that the same colonization routes have been taken by sympatric species and that these routes were affected by lake level fluctuations in the past.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the recent history of a large prealpine lake (Lake Bourget) using chironomids, diatoms and organic matter analysis, and deals with the ability of paleolimnological approach to define an ecological reference state for the lake in the sense of the European Framework Directive. The study at low resolution of subfossil chironomids in a 4-m-long core shows the remarkable stability over the last 2.5 kyrs of the profundal community dominated by a Micropsectra-association until the beginning of the twentieth century, when oxyphilous taxa disappeared. Focusing on this key recent period, a high resolution and multiproxy study of two short cores reveals a progressive evolution of the lake's ecological state. Until AD 1880, Lake Bourget showed low organic matter content in the deep sediments (TOC less than 1%) and a well-oxygenated hypolimnion that allowed the development of a profundal oxyphilous chironomid fauna (Micropsectra-association). Diatom communities were characteristic of oligotrophic conditions. Around AD 1880, a slight increase in the TOC was the first sign of changes in lake conditions. This was followed by a first limited decline in oligotrophic diatom taxa and the disappearance of two oxyphilous chironomid taxa at the beginning of the twentieth century. The 1940s were a major turning point in recent lake history. Diatom assemblages and accumulation of well preserved planktonic organic matter in the sediment provide evidence of strong eutrophication. The absence of profundal chironomid communities reveals permanent hypolimnetic anoxia. From AD 1995 to 2006, the diatom assemblages suggest a reduction in nutrients, and a return to mesotrophic conditions, a result of improved wastewater management. However, no change in hypolimnion benthic conditions has been shown by either the organic matter or the subfossil chironomid profundal community. Our results emphasize the relevance of the paleolimnological approach for the assessment of reference conditions for modern lakes. Before AD 1900, the profundal Micropsectra-association and the Cyclotella dominated diatom community can be considered as the Lake Bourget reference community, which reflects the reference ecological state of the lake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lake Neuchatel is a medium sized, hard-water lake, lacking varved sediments, situated in the western Swiss Lowlands at the foot of the Jura Mountains. Stable isotope data (delta(18)O and delta(13)C) from both bulk carbonate and ostracode calcite in an 81 cm long, radiocarbon-dated sediment core represent the last 1500 years of Lake Neuchatel's environmental history. Comparison between this isotopic and other palaeolimnologic data (mineralogical, geochemical, palynological, etc.) helps to differentiate between anthropogenic and natural factors most recently affecting the lake. An increase in lacustrine productivity (450-650AD ca), inferred from the positive trend in delta(13)C values of bulk carbonate, is related to medieval forest clearances and the associated nutrient budget changes. A negative trend in both the bulk carbonate and ostracode calcite delta(18)O values between approximately 1300 and 1500AD, is tentatively interpreted as due to a cooling in mean air temperature at the transition from the Medieval Warm Period to the Little Ice Age. Negative trends in bulk carbonate delta(18)O and delta(13)C values through the uppermost sediments, which have no equivalent in ostracode calcite isotopic values, are concomitant with the recent onset of eutrophication in the lake. Isotopic disequilibrium during calcite precipitation, probably due to kinetic factors in periods of high productivity is postulated as the mechanism to explain the associated negative isotopic trends, although the effect of a shift of the calcite precipitation towards the warmer months cannot be excluded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Species richness and geographical phenotypic variation in East African lacustrine cichlids are often correlated with ecological specializations and limited dispersal. This study compares mitochondrial and microsatellite genetic diversity and structure among three sympatric rock-dwelling cichlids of Lake Tanganyika, Eretmodus cyanostictus, Tropheus moorii, and Ophthalmotilapia ventralis. The species represent three endemic, phylogenetically distinct tribes (Eretmodini, Tropheini, and Ectodini), and display divergent ecomorphological and behavioral specialization. Sample locations span both continuous, rocky shoreline and a potential dispersal barrier in the form of a muddy bay. High genetic diversity and population differentiation were detected in T. moorii and E. cyanostictus, whereas much lower variation and structure were found in O. ventralis. In particular, while a 7-km-wide muddy bay curtails dispersal in all three species to a similar extent, gene flow along mostly continuous habitat appeared to be controlled by distance in E. cyanostictus, further restricted by site philopatry and/or minor habitat discontinuities in T. moorii, and unrestrained in O. ventralis. In contrast to the general pattern of high gene flow along continuous shorelines in rock-dwelling cichlids of Lake Malawi, our study identifies differences in population structure among stenotopic Lake Tanganyika species. The amount of genetic differentiation among populations was not related to the degree of geographical variation of body color, especially since more phenotypic variation is observed in O. ventralis than in the genetically highly structured E. cyanostictus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The brain uses lactate produced by glycolysis as an energy source. How lactate originated from the blood stream is used to fuel brain metabolism is not clear. The current study measures brain metabolic fluxes and estimates the amount of pyruvate that becomes labeled in glial and neuronal compartments upon infusion of [3-(13) C]lactate. For that, labeling incorporation into carbons of glutamate and glutamine was measured by (13) C magnetic resonance spectroscopy at 14.1 T and analyzed with a two-compartment model of brain metabolism to estimate rates of mitochondrial oxidation, glial pyruvate carboxylation, and the glutamate-glutamine cycle as well as pyruvate fractional enrichments. Extracerebral lactate at supraphysiological levels contributes at least two-fold more to replenish the neuronal than the glial pyruvate pools. The rates of mitochondrial oxidation in neurons and glia, pyruvate carboxylase, and glutamate-glutamine cycles were similar to those estimated by administration of (13) C-enriched glucose, the main fuel of brain energy metabolism. These results are in agreement with primary utilization of exogenous lactate in neurons rather than astrocytes. © 2014 Wiley Periodicals, Inc.