124 resultados para Interference microscopy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Second Harmonic Generation (SHG) microscopy recently appeared as an efficient optical imaging technique to probe unstained collagen-rich tissues like cornea. Moreover, corneal remodeling occurs in many diseases and precise characterization requires overcoming the limitations of conventional techniques. In this work, we focus on diabetes, which affects hundreds of million people worldwide and most often leads to diabetic retinopathy, with no early diagnostic tool. This study then aims to establish the potential of SHG microscopy for in situ detection and characterization of hyperglycemia-induced abnormalities in the Descemet's membrane, in the posterior cornea. METHODOLOGY/PRINCIPAL FINDINGS: We studied corneas from age-matched control and Goto-Kakizaki rats, a spontaneous model of type 2 diabetes, and corneas from human donors with type 2 diabetes and without any diabetes. SHG imaging was compared to confocal microscopy, to histology characterization using conventional staining and transmitted light microscopy and to transmission electron microscopy. SHG imaging revealed collagen deposits in the Descemet's membrane of unstained corneas in a unique way compared to these gold standard techniques in ophthalmology. It provided background-free images of the three-dimensional interwoven distribution of the collagen deposits, with improved contrast compared to confocal microscopy. It also provided structural capability in intact corneas because of its high specificity to fibrillar collagen, with substantially larger field of view than transmission electron microscopy. Moreover, in vivo SHG imaging was demonstrated in Goto-Kakizaki rats. CONCLUSIONS/SIGNIFICANCE: Our study shows unambiguously the high potential of SHG microscopy for three-dimensional characterization of structural abnormalities in unstained corneas. Furthermore, our demonstration of in vivo SHG imaging opens the way to long-term dynamical studies. This method should be easily generalized to other structural remodeling of the cornea and SHG microscopy should prove to be invaluable for in vivo corneal pathological studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The age-related increase in interference susceptibility has been well documented and largely attributed to a deficit in inhibition. In the present study, event-related potentials were used to investigate EEG correlates of inhibitory processing in an interference "Arrow" task. A specific interest was addressed to theN2 and P3 components that respectively refers to conflict monitoring and to efficiency of inhibition processes (Anguera et al,. 2011). Younger (N=10, Mage=24.6) and older (N=10, Mage=65.5) participants were invited to perform a task consisting in deciding, as fast and accurately as possible, whether an arrow presented on a computer screen points to the left or the right, irrespective of its position on the screen (left, middle or right). Responses were provided by key-presses using the left and right indexes. Three conditions were considered: congruent (arrow pointing to the same direction as that of the side of the screen on which it appears), incongruent (arrow pointing to the opposite direction), and neutral (arrow presented at the center of the screen). A total of 56 trials per conditions were performed. Behaviorally, the results showed that in the incongruent condition the percent of correct responses significantly decreased in both groups. After adjustment with simple RT (additional control task), the increased RTs obtained in the old group were significantly more pronounced in the incongruent condition. With respect to electrophysiological data, results showed that frontal site (Fz), the N2 amplitude was significantly larger for the younger as compared to the older (- 2.55 μV vs. -0.62 μV respectively) whatever the condition. At central site (Cz), the P3 amplitude significantly decreased in the older compared to the younger in the incongruent condition only. Our findings suggest that the increased RTs observed in older participants during the incongruent condition is more specifically linked to late cognitive resources involved in inhibiting prepotent response tendencies rather than associated with earlier stages of treatment dedicated to conflict monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different interferometric techniques were developed last decade to obtain full field, quantitative, and absolute phase imaging, such as phase-shifting, Fourier phase microscopy, Hilbert phase microscopy or digital holographic microscopy (DHM). Although, these techniques are very similar, DHM combines several advantages. In contrast, to phase shifting, DHM is indeed capable of single-shot hologram recording allowing a real-time absolute phase imaging. On the other hand, unlike to Fourier phase or Hilbert phase microscopy, DHM does not require to record in focus images of the specimen on the digital detector (CCD or CMOS camera), because a numerical focalization adjustment can be performed by a numerical wavefront propagation. Consequently, the depth of view of high NA microscope objectives is numerically extended. For example, two different biological cells, floating at different depths in a liquid, can be focalized numerically from the same digital hologram. Moreover, the numerical propagation associated to digital optics and automatic fitting procedures, permits vibrations insensitive full- field phase imaging and the complete compensation for a priori any image distortion or/and phase aberrations introduced for example by imperfections of holders or perfusion chamber. Examples of real-time full-field phase images of biological cells have been demonstrated. ©2008 COPYRIGHT SPIE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of two approaches for high-throughput, high-resolution X-ray phase contrast tomographic imaging being used at the tomographic microscopy and coherent radiology experiments (TOMCAT) beamline of the SLS is discussed and illustrated. Differential phase contrast (DPC) imaging, using a grating interferometer and a phase-stepping technique, is integrated into the beamline environment at TOMCAT in terms of the fast acquisition and reconstruction of data and the availability to scan samples within an aqueous environment. A second phase contrast method is a modified transfer of intensity approach that can yield the 3D distribution of the decrement of the refractive index of a weakly absorbing object from a single tomographic dataset. The two methods are complementary to one another: the DPC method is characterised by a higher sensitivity and by moderate resolution with larger samples; the modified transfer of intensity approach is particularly suited for small specimens when high resolution (around 1 mu m) is required. Both are being applied to investigations in the biological and materials science fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on advanced dual-wavelength digital holographic microscopy (DHM) methods, enabling single-acquisition real-time micron-range measurements while maintaining single-wavelength interferometric resolution in the nanometer regime. In top of the unique real-time capability of our technique, it is shown that axial resolution can be further increased compared to single-wavelength operation thanks to the uncorrelated nature of both recorded wavefronts. It is experimentally demonstrated that DHM topographic investigation within 3 decades measurement range can be achieved with our arrangement, opening new applications possibilities for this interferometric technique. ©2008 COPYRIGHT SPIE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital Holographic Microscopy (DHM), is a new imaging technique allowing to provide quantitative phase images with a high accuracy and stability making possible to explore a large variety of relevant processes, occurring on the p.s to day time scale, in the fields including material research as well as cell biology. As a non invasive and real time imaging technique, DHM is particularly well suited for high throughput screening

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Axial deflection of DNA molecules in solution results from thermal motion and intrinsic curvature related to the DNA sequence. In order to measure directly the contribution of thermal motion we constructed intrinsically straight DNA molecules and measured their persistence length by cryo-electron microscopy. The persistence length of such intrinsically straight DNA molecules suspended in thin layers of cryo-vitrified solutions is about 80 nm. In order to test our experimental approach, we measured the apparent persistence length of DNA molecules with natural "random" sequences. The result of about 45 nm is consistent with the generally accepted value of the apparent persistence length of natural DNA sequences. By comparing the apparent persistence length to intrinsically straight DNA with that of natural DNA, it is possible to determine both the dynamic and the static contributions to the apparent persistence length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pharmacological activity of several amphiphilic drugs is often related to their ability to interact with biological membranes. Propranolol is an efficient multidrug resistance (MDR) modulator; it is a nonselective beta-blocker and is thought to reduce hypertension by decreasing the cardiac frequency and thus blood pressure. It is used in drug delivery studies in order to treat systemic hypertension. We are interested in the interaction of propranolol with artificial membranes, as liposomes of controllable size are used as biocompatible and protective structures to encapsulate labile molecules, such as proteins, nucleic acids or drugs, for pharmaceutical, cosmetic or chemical applications. We present here a study of the interaction of propranolol, a cationic surfactant, with pure egg phosphatidylcholine (EPC) vesicles. The gradual transition from liposome to micelle of EPC vesicles in the presence of propranolol was monitored by time-resolved electron cryo-microscopy (cryo-EM) under different experimental conditions. The liposome-drug interaction was studied with varying drug/lipid (D/L) ratios and different stages were captured by direct thin-film vitrification. The time-series cryo-EM data clearly illustrate the mechanism of action of propranolol on the liposome structure: the drug disrupts the lipid bilayer by perturbing the local organization of the phospholipids. This is followed by the formation of thread-like micelles, also called worm-like micelles (WLM), and ends with the formation of spherical (globular) micelles. The overall reaction is slow, with the process taking almost two hours to be completed. The effect of a monovalent salt was also investigated by repeating the lipid-surfactant interaction experiments in the presence of KCl as an additive to the lipid/drug suspension. When KCl was added in the presence of propranolol the overall reaction was the same but with slower kinetics, suggesting that this monovalent salt affects the general lipid-to-micelle transition by stabilizing the membrane, presumably by binding to the carbonyl chains of the phosphatidylcholine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryo-electron microscopy of vitreous sections (CEMOVIS) has recently been shown to provide images of biological specimens with unprecedented quality and resolution. Cutting the sections remains however the major difficulty. Here, we examine the parameters influencing the quality of the sections and analyse the resulting artefacts. They are in particular: knife marks, compression, crevasses, and chatter. We propose a model taking into account the interplay between viscous flow and fracture. We confirm that crevasses are formed on only one side of the section, and define conditions by which they can be avoided. Chatter is an effect of irregular compression due to friction of the section of the knife edge and conditions to prevent this are also explored. In absence of crevasses and chatter, the bulk of the section is compressed approximately homogeneously. Within this approximation, it is possible to correct for compression by a simple linear transformation for the bulk of the section. A research program is proposed to test and refine our understanding of the sectioning process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type II topoisomerases (Topo II) are unique enzymes that change the DNA topology by catalyzing the passage of two double-strands across each other by using the energy from ATP hydrolysis. In vitro, human Topo II relaxes positive supercoiled DNA around 10-fold faster than negative supercoiled DNA. By using atomic force microscopy (AFM) we found that human Topo II binds preferentially to DNA cross-overs. Around 50% of the DNA crossings, where Topo II was bound to, presented an angle in the range of 80-90°, suggesting a favored binding geometry in the chiral discrimination by Topo II. Our studies with AFM also helped us visualize the dynamics of the unknotting action of Topo II in knotted molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital holography microscopy (DHM) is an optical microscopy technique which allows recording non-invasively the phase shift induced by living cells with nanometric sensitivity. Here, we exploit the phase signal as an indicator of dry mass (related to the protein concentration). This parameter allows monitoring the protein production rate and its evolution during the cell cycle. ©2008 COPYRIGHT SPIE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuroimaging with diffusion-weighted imaging is routinely used for clinical diagnosis/prognosis. Its quantitative parameter, the apparent diffusion coefficient (ADC), is thought to reflect water mobility in brain tissues. After injury, reduced ADC values are thought to be secondary to decreases in the extracellular space caused by cell swelling. However, the physiological mechanisms associated with such changes remain uncertain. Aquaporins (AQPs) facilitate water diffusion through the plasma membrane and provide a unique opportunity to examine the molecular mechanisms underlying water mobility. Because of this critical role and the recognition that brain AQP4 is distributed within astrocytic cell membranes, we hypothesized that AQP4 contributes to the regulation of water diffusion and variations in its expression would alter ADC values in normal brain. Using RNA interference in the rodent brain, we acutely knocked down AQP4 expression and observed that a 27% AQP4-specific silencing induced a 50% decrease in ADC values, without modification of tissue histology. Our results demonstrate that ADC values in normal brain are modulated by astrocytic AQP4. These findings have major clinical relevance as they suggest that imaging changes seen in acute neurologic disorders such as stroke and trauma are in part due to changes in tissue AQP4 levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution structural information on optimally preserved bacterial cells can be obtained with cryo-electron microscopy of vitreous sections. With the help of this technique, the existence of a periplasmic space between the plasma membrane and the thick peptidoglycan layer of the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus was recently shown. This raises questions about the mode of polymerization of peptidoglycan. In the present study, we report the structure of the cell envelope of three gram-positive bacteria (B. subtilis, Streptococcus gordonii, and Enterococcus gallinarum). In the three cases, a previously undescribed granular layer adjacent to the plasma membrane is found in the periplasmic space. In order to better understand how nascent peptidoglycan is incorporated into the mature peptidoglycan, we investigated cellular regions known to represent the sites of cell wall production. Each of these sites possesses a specific structure. We propose a hypothetic model of peptidoglycan polymerization that accommodates these differences: peptidoglycan precursors could be exported from the cytoplasm to the periplasmic space, where they could diffuse until they would interact with the interface between the granular layer and the thick peptidoglycan layer. They could then polymerize with mature peptidoglycan. We report cytoplasmic structures at the E. gallinarum septum that could be interpreted as cytoskeletal elements driving cell division (FtsZ ring). Although immunoelectron microscopy and fluorescence microscopy studies have demonstrated the septal and cytoplasmic localization of FtsZ, direct visualization of in situ FtsZ filaments has not been obtained in any electron microscopy study of fixed and dehydrated bacteria.