136 resultados para Inode-link reverse map
Resumo:
Human immunodeficiency virus type 1 (HIV-1) variants resistant to protease (PR) and reverse transcriptase (RT) inhibitors may display impaired infectivity and replication capacity. The individual contributions of mutated HIV-1 PR and RT to infectivity, replication, RT activity, and protein maturation (herein referred to as "fitness") in recombinant viruses were investigated by separately cloning PR, RT, and PR-RT cassettes from drug-resistant mutant viral isolates into the wild-type NL4-3 background. Both mutant PR and RT contributed to measurable deficits in fitness of viral constructs. In peripheral blood mononuclear cells, replication rates (means +/- standard deviations) of RT recombinants were 72.5% +/- 27.3% and replication rates of PR recombinants were 60.5% +/- 33.6% of the rates of NL4-3. PR mutant deficits were enhanced in CEM T cells, with relative replication rates of PR recombinants decreasing to 15.8% +/- 23.5% of NL4-3 replication rates. Cloning of the cognate RT improved fitness of some PR mutant clones. For a multidrug-resistant virus transmitted through sexual contact, RT constructs displayed a marked infectivity and replication deficit and diminished packaging of Pol proteins (RT content in virions diminished by 56.3% +/- 10.7%, and integrase content diminished by 23.3% +/- 18.4%), a novel mechanism for a decreased-fitness phenotype. Despite the identified impairment of recombinant clones, fitness of two of the three drug-resistant isolates was comparable to that of wild-type, susceptible viruses, suggestive of extensive compensation by genomic regions away from PR and RT. Only limited reversion of mutated positions to wild-type amino acids was observed for the native isolates over 100 viral replication cycles in the absence of drug selective pressure. These data underscore the complex relationship between PR and RT adaptive changes and viral evolution in antiretroviral drug-resistant HIV-1.
Change in individual growth rate and its link to gill-net fishing in two sympatric whitefish species
Resumo:
Size-selective fishing is expected to affect traits such as individual growth rate, but the relationship between the fishery-linked selection differentials and the corresponding phenotypic changes is not well understood. We analysed a 25-year monitoring survey of sympatric populations of the two Alpine whitefish Coregonus albellus and C. fatioi. We determined the fishing-induced selection differentials on growth rates, the actual change of growth rates over time, and potential indicators of reproductive strategies that may change over time. We found marked declines in adult growth rate and significant selection differentials that may partly explain the observed declines. However, when comparing the two sympatric species, the selection differentials on adult growth were stronger in C. albellus while the decline in adult growth rate seemed more pronounced in C. fatioi. Moreover, the selection differential on juvenile growth was significant in C. albellus but not in C. fatioi, while a significant reduction in juvenile growth over the last 25 years was only found in C. fatioi. Our results suggest that size-selective fishing affects the genetics for individual growth in these whitefish, and that the link between selection differentials and phenotypic changes is influenced by species-specific factors.
Resumo:
It is now well established that genes within the major histocompatibility complex (MHC) somehow affect the production of body odors in several vertebrates, including humans. Here we discuss whether variation in the intensity of body odors may be influenced by the MHC. In order to examine this question, we have to control for MHC-linked odor perception on the smeller's side. Such a control is necessary because the perception of pleasantness and intensity seem to be confounded, and the causalities are still unsolved. It has previously been found that intense odors are scored as less pleasant if the signaler and the receiver are of MHC-dissimilar type, but not if they are of MHC similar type. We argue, and first data suggest, that an effect of the degree of MHC-heterozygosity and odor intensity is likely (MHC-homozygotes may normally smell more intense), while there is currently no strong argument for other possible links between the MHC and body odor intensity.
Resumo:
The retinal pigment epithelium (RPE) is constantly exposed to external injuries which lead to degeneration, dysfunction or loss of RPE cells. The balance between RPE cells death and proliferation may be responsible for several diseases of the underlying retina, including age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Signaling pathways able to control cells proliferation or death usually involve the MAPK (mitogen-activated protein kinases) pathways, which modulate the activity of transcription factors by phosphorylation. UV exposure induces DNA breakdown and causes cellular damage through the production of reactive oxygen species (ROS) leading to programmed cell death. In this study, human retinal pigment epithelial cells ARPE19 were exposed to 100 J/m(2) of UV-C and MAPK pathways were studied. We first showed the expression of the three major MAPK pathways. Then we showed that activator protein-1 (AP-1) was activated through phosphorylation of cJun and cFos, induced by JNK and p38, respectively. Specific inhibitors of both kinases decreased their respective activities and phosphorylation of their nuclear targets (cJun and cFos) and reduced UV-induced cell death. The use of specific kinases inhibitors may provide excellent tools to prevent RPE apoptosis specifically in RPE diseases involving ROS and other stress-related compounds such as in AMD.
Resumo:
Monitoring of T-cell responses in genital mucosa has remained a major challenge because of the absence of lymphoid aggregates and the low abundance of T cells. Here we have adapted to genital tissue a sensitive real-time reverse transcription-PCR (TaqMan) method to measure induction of gamma interferon (IFN-gamma) mRNA transcription after 3 h of antigen-specific activation of CD8 T cells. For this purpose, we vaccinated C57BL/6 mice subcutaneously with human papillomavirus type 16 L1 virus-like particles and monitored the induction of CD8 T cells specific to the L1(165-173) H-2D(b)-restricted epitope. Comparison of the responses induced in peripheral blood mononuclear cells and lymph nodes (LN) by L1-specific IFN-gamma enzyme-linked immunospot assay and TaqMan determination of the relative increase in L1-specific IFN-gamma mRNA induction normalized to the content of CD8b mRNA showed a significant correlation, despite the difference in the readouts. Most of the cervicovaginal tissues could be analyzed by the TaqMan method if normalization to glyceraldehyde-3-phosphate dehydrogenase mRNA was used and a significant L1-specific IFN-gamma induction was found in one-third of the immunized mice. This local response did not correlate with the immune responses measured in the periphery, with the exception of the sacral LN, an LN draining the genital mucosa, where a significant correlation was found. Our data show that the TaqMan method is sensitive enough to detect antigen-specific CD8 T-cell responses in the genital mucosa of individual mice, and this may contribute to elaborate effective vaccines against genital pathogens.
Resumo:
SUMMARYThe innate immune system plays a central role in host defenses against invading pathogens. Innate immune cells sense the presence of pathogens through pattern recognition receptors that trigger intracellular signaling, leading to the production of pro-inflammatory mediators like cytokines, which shape innate and adaptive immune responses. Both by excess and by default inflammation may be detrimental to the host. Indeed, severe sepsis and septic shock are lethal complications of infections characterized by a dysregulated inflammatory response.In recent years, members of the superfamily of histone deacetylases have been the focus of great interest. In mammals, histone deacetylases are broadly classified into two main subfamilies comprising histone deacetylases 1-11 (HDAC1-11) and sirtuins 1-7 (SIRT1-7). These enzymes influence gene expression by deacetylating histones and numerous non-histone proteins. Histone deacetylases have been involved in the development of oncologic, metabolic, cardiovascular, neurodegenerative and autoimmune diseases. Pharmacological modulators of histone deacetylase activity, principally inhibitors, have been developed for the treatment of cancer and metabolic diseases. When we initiated this project, several studies suggested that inhibitors of HDAC 1-11 have anti-inflammatory activity. Yet, their influence on innate immune responses was largely uncharacterized. The present study was initiated to fill in this gap.In the first part of this work, we report the first comprehensive study of the effects of HDAC 1- 11 inhibitors on innate immune responses in vitro and in vivo. Strikingly, expression studies revealed that HDAC1-11 inhibitors act essentially as negative regulators of basal and microbial product- induced expression of critical immune receptors and antimicrobial products by mouse and human innate immune cells like macrophages and dendritic cells. Furthermore, we describe a new molecular mechanism whereby HDAC1-11 inhibitors repress pro-inflammatory cytokine expression through the induction of the expression and the activity of the transcriptional repressor Μί-2β. HDAC1-11 inhibitors also impair the potential of macrophages to engulf and kill bacteria. Finally, mice treated with an HDAC inhibitor are more susceptible to non-severe bacterial and fungal infection, but are protected against toxic and septic shock. Altogether these data support the concept that HDAC 1-11 inhibitors have potent anti-inflammatory and immunomodulatory activities in vitro and in vivo.Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that plays a central role in innate immune responses, cell proliferation and oncogenesis. In the second part of this manuscript, we demonstrate that HDAC1-11 inhibitors inhibit MIF expression in vitro and in vivo and describe a novel molecular mechanism accounting for these effects. We propose that inhibition of MIF expression by HDAC 1-11 inhibitors may contribute to the antitumorigenic and anti-inflammatory effects of these drugs.NAD+ is an essential cofactor of sirtuins activity and one of the major sources of energy within the cells. Therefore, sirtuins link deacetylation to NAD+ metabolism and energy status. In the last part of this thesis, we report preliminary results indicating that a pharmacological inhibitor of SIRT1-2 drastically decreases pro-inflammatory cytokine production (RNA and protein) and interferes with MAP kinase intracellular signal transduction pathway in macrophages. Moreover, administration of the SIRT1-2 inhibitor protects mice from lethal endotoxic shock and septic shock.Overall, our studies demonstrate that inhibitors of HDAC1-11 and sirtuins are powerful anti-inflammatory molecules. Given their profound negative impact on the host antimicrobial defence response, these inhibitors might increase the susceptibility to opportunistic infections, especially in immunocompromised cancer patients. Yet, these inhibitors might be useful to control the inflammatory response in severely ill septic patients or in patients suffering from chronic inflammatory diseases.
Resumo:
High-field (>or=3 T) cardiac MRI is challenged by inhomogeneities of both the static magnetic field (B(0)) and the transmit radiofrequency field (B(1)+). The inhomogeneous B fields not only demand improved shimming methods but also impede the correct determination of the zero-order terms, i.e., the local resonance frequency f(0) and the radiofrequency power to generate the intended local B(1)+ field. In this work, dual echo time B(0)-map and dual flip angle B(1)+-map acquisition methods are combined to acquire multislice B(0)- and B(1)+-maps simultaneously covering the entire heart in a single breath hold of 18 heartbeats. A previously proposed excitation pulse shape dependent slice profile correction is tested and applied to reduce systematic errors of the multislice B(1)+-map. Localized higher-order shim correction values including the zero-order terms for frequency f(0) and radiofrequency power can be determined based on the acquired B(0)- and B(1)+-maps. This method has been tested in 7 healthy adult human subjects at 3 T and improved the B(0) field homogeneity (standard deviation) from 60 Hz to 35 Hz and the average B(1)+ field from 77% to 100% of the desired B(1)+ field when compared to more commonly used preparation methods.
Resumo:
Background and aim: H epatitis E v irus (HEV) infection has emerged as a c ause o f travel-related a nd autochthonous a cute hepatitis as well as chronic hepatitis in immunosuppressed patients. While t ravel-related cases a re c aused primarily b y infections w ith HEV of g enotype 1 ( HEV-1), autochthonous c ases a nd chronic cases a re d ue t o genotype 3 (HEV-3), which is s hared between humans and diverse animal species. The aim of this study was to establish HEV RNA detection assays f or q uantitative v iral load testing and genotyping. Methods: V iral RNA was p urified from plasma or s erum a nd converted to cDNA prior to (1) multiplex real-time PCR for HEV RNA quantification and (2) multiplex PCR coupled to DNA sequencing for HEV genotype determination. Real-time PCR was d esigned to match a ll known HEV genotypes available i n Genbank while PCR was designed using conserved primers flanking a variable region of the HEV RNA. Results: In a validation panel, the newly developed assays allowed for the reliable detection and genotyping of HEV-1 or HEV-3. Cases of t ravel-related and a utochthonous a cute h epatitis E a s well a s chronic hepatitis E i n immunosuppressed patients have b een identified using t hese a ssays a nd will be p resented in detail. Anti- HEV antibodies were n egative i n three well-characterized patients with chronic hepatitis E after organ transplantation. Conclusions: We developed and validated a quantitative HEV RNA detection assay that c an now be o ffered on a r outine basis (www.chuv.ch/imul/imu-collaborations-viral_hepatitis). Genotyping can also be offered on selected cases. HEV RNA detection is key in diagnosing chronic hepatitis E i n immunosuppressed patients with unexplained transaminase elevations, as serology can be negative in these patients.
Resumo:
ABSTRACT: Invasive candidiasis is a frequent life-threatening complication in critically ill patients. Early diagnosis followed by prompt treatment aimed at improving outcome by minimizing unnecessary antifungal use remains a major challenge in the ICU setting. Timely patient selection thus plays a key role for clinically efficient and cost-effective management. Approaches combining clinical risk factors and Candida colonization data have improved our ability to identify such patients early. While the negative predictive value of scores and predicting rules is up to 95 to 99%, the positive predictive value is much lower, ranging between 10 and 60%. Accordingly, if a positive score or rule is used to guide the start of antifungal therapy, many patients may be treated unnecessarily. Candida biomarkers display higher positive predictive values; however, they lack sensitivity and are thus not able to identify all cases of invasive candidiasis. The (1→3)-β-D-glucan (BG) assay, a panfungal antigen test, is recommended as a complementary tool for the diagnosis of invasive mycoses in high-risk hemato-oncological patients. Its role in the more heterogeneous ICU population remains to be defined. More efficient clinical selection strategies combined with performant laboratory tools are needed in order to treat the right patients at the right time by keeping costs of screening and therapy as low as possible. The new approach proposed by Posteraro and colleagues in the previous issue of Critical Care meets these requirements. A single positive BG value in medical patients admitted to the ICU with sepsis and expected to stay for more than 5 days preceded the documentation of candidemia by 1 to 3 days with an unprecedented diagnostic accuracy. Applying this one-point fungal screening on a selected subset of ICU patients with an estimated 15 to 20% risk of developing candidemia is an appealing and potentially cost-effective approach. If confirmed by multicenter investigations, and extended to surgical patients at high risk of invasive candidiasis after abdominal surgery, this Bayesian-based risk stratification approach aimed at maximizing clinical efficiency by minimizing health care resource utilization may substantially simplify the management of critically ill patients at risk of invasive candidiasis.
Resumo:
La douleur neuropathique est définie comme une douleur causée par une lésion du système nerveux somato-sensoriel. Elle se caractérise par des douleurs exagérées, spontanées, ou déclenchées par des stimuli normalement non douloureux (allodynie) ou douloureux (hyperalgésie). Bien qu'elle concerne 7% de la population, ses mécanismes biologiques ne sont pas encore élucidés. L'étude des variations d'expressions géniques dans les tissus-clés des voies sensorielles (notamment le ganglion spinal et la corne dorsale de la moelle épinière) à différents moments après une lésion nerveuse périphérique permettrait de mettre en évidence de nouvelles cibles thérapeutiques. Elles se détectent de manière sensible par reverse transcription quantitative real-time polymerase chain reaction (RT- qPCR). Pour garantir des résultats fiables, des guidelines ont récemment recommandé la validation des gènes de référence utilisés pour la normalisation des données ("Minimum information for publication of quantitative real-time PCR experiments", Bustin et al 2009). Après recherche dans la littérature des gènes de référence fréquemment utilisés dans notre modèle de douleur neuropathique périphérique SNI (spared nerve injury) et dans le tissu nerveux en général, nous avons établi une liste de potentiels bons candidats: Actin beta (Actb), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal proteins 18S (18S), L13a (RPL13a) et L29 (RPL29), hypoxanthine phosphoribosyltransferase 1 (HPRT1) et hydroxymethyl-bilane synthase (HMBS). Nous avons évalué la stabilité d'expression de ces gènes dans le ganglion spinal et dans la corne dorsale à différents moments après la lésion nerveuse (SNI) en calculant des coefficients de variation et utilisant l'algorithme geNorm qui compare les niveaux d'expression entre les différents candidats et détermine la paire de gènes restante la plus stable. Il a aussi été possible de classer les gènes selon leur stabilité et d'identifier le nombre de gènes nécessaires pour une normalisation la plus précise. Les gènes les plus cités comme référence dans le modèle SNI ont été GAPDH, HMBS, Actb, HPRT1 et 18S. Seuls HPRT1 and 18S ont été précédemment validés dans des arrays de RT-qPCR. Dans notre étude, tous les gènes testés dans le ganglion spinal et dans la corne dorsale satisfont au critère de stabilité exprimé par une M-value inférieure à 1. Par contre avec un coefficient de variation (CV) supérieur à 50% dans le ganglion spinal, 18S ne peut être retenu. La paire de gènes la plus stable dans le ganglion spinal est HPRT1 et Actb et dans la corne dorsale il s'agit de RPL29 et RPL13a. L'utilisation de 2 gènes de référence stables suffit pour une normalisation fiable. Nous avons donc classé et validé Actb, RPL29, RPL13a, HMBS, GAPDH, HPRT1 et 18S comme gènes de référence utilisables dans la corne dorsale pour le modèle SNI chez le rat. Dans le ganglion spinal 18S n'a pas rempli nos critères. Nous avons aussi déterminé que la combinaison de deux gènes de référence stables suffit pour une normalisation précise. Les variations d'expression génique de potentiels gènes d'intérêts dans des conditions expérimentales identiques (SNI, tissu et timepoints post SNI) vont pouvoir se mesurer sur la base d'une normalisation fiable. Non seulement il sera possible d'identifier des régulations potentiellement importantes dans la genèse de la douleur neuropathique mais aussi d'observer les différents phénotypes évoluant au cours du temps après lésion nerveuse.