48 resultados para Inertial Reels.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monitoring the performance is a crucial task for elite sports during both training and competition. Velocity is the key parameter of performance in swimming, but swimming performance evaluation remains immature due to the complexities of measurements in water. The purpose of this study is to use a single inertial measurement unit (IMU) to estimate front crawl velocity. Thirty swimmers, equipped with an IMU on the sacrum, each performed four different velocity trials of 25 m in ascending order. A tethered speedometer was used as the velocity measurement reference. Deployment of biomechanical constraints of front crawl locomotion and change detection framework on acceleration signal paved the way for a drift-free integration of forward acceleration using IMU to estimate the swimmers velocity. A difference of 0.6 ± 5.4 cm · s(-1) on mean cycle velocity and an RMS difference of 11.3 cm · s(-1) in instantaneous velocity estimation were observed between IMU and the reference. The most important contribution of the study is a new practical tool for objective evaluation of swimming performance. A single body-worn IMU provides timely feedback for coaches and sport scientists without any complicated setup or restraining the swimmer's natural technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shoulder disorders, including rotator cuff tears, affect the shoulder function and result in adapted muscle activation. Although these adaptations have been studied in controlled conditions, free-living activities have not been investigated. Based on the kinematics measured with inertial sensors and portable electromyography, the objectives of this study were to quantify the duration of the muscular activation in the upper trapezius (UT), medial deltoid (MD) and biceps brachii (BB) during motion and to investigate the effect of rotator cuff tear in laboratory settings and daily conditions. The duration of movements and muscular activations were analysed separately and together using the relative time of activation (TEMG/mov). Laboratory measurements showed the parameter's reliability through movement repetitions (ICC > 0.74) and differences in painful shoulders compared with healthy ones (p < 0.05): longer activation for UT; longer activation for MD during abduction and tendency to shorter activation in other movements; shorter activation for BB. In daily conditions, TEMG/mov for UT was longer, whereas it was shorter for MD and BB (p < 0.05). Moreover, significant correlations were observed between these parameters and clinical scores. This study thus provides new insights into the rotator cuff tear effect on duration of muscular activation in daily activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to distinguish dysfunctional gait; clinicians require a measure of reference gait parameters for each population. This study provided normative values for widely used parameters in more than 1400 able-bodied adults over the age of 65. We also measured the foot clearance parameters (i.e., height of the foot above ground during swing phase) that are crucial to understand the complex relationship between gait and falls as well as obstacle negotiation strategies. We used a shoe-worn inertial sensor on each foot and previously validated algorithms to extract the gait parameters during 20 m walking trials in a corridor at a self-selected pace. We investigated the difference of the gait parameters between male and female participants by considering the effect of age and height factors. Besides; we examined the inter-relation of the clearance parameters with the gait speed. The sample size and breadth of gait parameters provided in this study offer a unique reference resource for the researchers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study proposes a method based on ski fixed inertial sensors to automatically compute spatio-temporal parameters (phase durations, cycle speed and cycle length) for the diagonal stride in classical cross-country skiing. The proposed system was validated against a marker-based motion capture system during indoor treadmill skiing. Skiing movement of 10 junior to world-cup athletes was measured for four different conditions. The accuracy (i.e. median error) and precision (i.e. interquartile range of error) of the system was below 6ms for cycle duration and ski thrust duration and below 35ms for pole push duration. Cycle speed precision (accuracy) was below 0.1m/s (0.005m/s) and cycle length precision (accuracy) was below 0.15m (0.005m). The system was sensitive to changes of conditions and was accurate enough to detect significant differences reported in previous studies. Since capture volume is not limited and setup is simple, the system would be well suited for outdoor measurements on snow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a new method, based on inertial sensors, to automatically measure at high frequency the durations of the main phases of ski jumping (i.e. take-off release, take-off, and early flight). The kinematics of the ski jumping movement were recorded by four inertial sensors, attached to the thigh and shank of junior athletes, for 40 jumps performed during indoor conditions and 36 jumps in field conditions. An algorithm was designed to detect temporal events from the recorded signals and to estimate the duration of each phase. These durations were evaluated against a reference camera-based motion capture system and by trainers conducting video observations. The precision for the take-off release and take-off durations (indoor < 39 ms, outdoor = 27 ms) can be considered technically valid for performance assessment. The errors for early flight duration (indoor = 22 ms, outdoor = 119 ms) were comparable to the trainers' variability and should be interpreted with caution. No significant changes in the error were noted between indoor and outdoor conditions, and individual jumping technique did not influence the error of take-off release and take-off. Therefore, the proposed system can provide valuable information for performance evaluation of ski jumpers during training sessions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to investigate the influence of ankle osteoarthritis (AOA) treatments, i.e., ankle arthrodesis (AA) and total ankle replacement (TAR), on the kinematics of multi-segment foot and ankle complex during relatively long-distance gait. Forty-five subjects in four groups (AOA, AA, TAR, and control) were equipped with a wearable system consisting of inertial sensors installed on the tibia, calcaneus, and medial metatarsals. The subjects walked 50-m twice while the system measured the kinematic parameters of their multi-segment foot: the range of motion of joints between tibia, calcaneus, and medial metatarsals in three anatomical planes, and the peaks of angular velocity of these segments in the sagittal plane. These parameters were then compared among the four groups. It was observed that the range of motion and peak of angular velocities generally improved after TAR and were similar to the control subjects. However, unlike AOA and TAR, AA imposed impairments in the range of motion in the coronal plane for both the tibia-calcaneus and tibia-metatarsals joints. In general, the kinematic parameters showed significant correlation with established clinical scales (FFI and AOFAS), which shows their convergent validity. Based on the kinematic parameters of multi-segment foot during 50-m gait, this study showed significant improvements in foot mobility after TAR, but several significant impairments remained after AA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to design and validate the measurement of ankle kinetics (force, moment, and power) during consecutive gait cycles and in the field using an ambulatory system. An ambulatory system consisting of plantar pressure insole and inertial sensors (3D gyroscopes and 3D accelerometers) on foot and shank was used. To test this system, 12 patients and 10 healthy elderly subjects wore shoes embedding this system and walked many times across a gait lab including a force-plate surrounded by seven cameras considered as the reference system. Then, the participants walked two 50-meter trials where only the ambulatory system was used. Ankle force components and sagittal moment of ankle measured by ambulatory system showed correlation coefficient (R) and normalized RMS error (NRMSE) of more than 0.94 and less than 13% in comparison with the references system for both patients and healthy subjects. Transverse moment of ankle and ankle power showed R>0.85 and NRMSE<23%. These parameters also showed high repeatability (CMC>0.7). In contrast, the ankle coronal moment of ankle demonstrated high error and lower repeatability. Except for ankle coronal moment, the kinetic features obtained by the ambulatory system could distinguish the patients with ankle osteoarthritis from healthy subjects when measured in 50-meter trials. The proposed ambulatory system can be easily accessible in most clinics and could assess main ankle kinetics quantities with acceptable error and repeatability for clinical evaluations. This system is therefore suggested for field measurement in clinical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT This dissertation investigates the, nature of space-time as described by the theory of general relativity. It mainly argues that space-time can be naturally interpreted as a physical structure in the precise sense of a network of concrete space-time relations among concrete space-time points that do not possess any intrinsic properties and any intrinsic identity. Such an interpretation is fundamentally based on two related key features of general relativity, namely substantive general covariance and background independence, where substantive general covariance is understood as a gauge-theoretic invariance under active diffeomorphisms and background independence is understood in the sense that the metric (or gravitational) field is dynamical and that, strictly speaking, it cannot be uniquely split into a purely gravitational part and a fixed purely inertial part or background. More broadly, a precise notion of (physical) structure is developed within the framework of a moderate version of structural realism understood as a metaphysical claim about what there is in the world. So, the developement of this moderate structural realism pursues two main aims. The first is purely metaphysical, the aim being to develop a coherent metaphysics of structures and of objects (particular attention is paid to the questions of identity and individuality of these latter within this structural realist framework). The second is to argue that moderate structural realism provides a convincing interpretation of the world as described by fundamental physics and in particular of space-time as described by general relativity. This structuralist interpretation of space-time is discussed within the traditional substantivalist-relationalist debate, which is best understood within the broader framework of the question about the relationship between space-time on the one hand and matter on the other. In particular, it is claimed that space-time structuralism does not constitute a 'tertium quid' in the traditional debate. Some new light on the question of the nature of space-time may be shed from the fundamental foundational issue of space-time singularities. Their possible 'non-local' (or global) feature is discussed in some detail and it is argued that a broad structuralist conception of space-time may provide a physically meaningful understanding of space-time singularities, which is not plagued by the conceptual difficulties of the usual atomsitic framework. Indeed, part of these difficulties may come from the standard differential geometric description of space-time, which encodes to some extent this atomistic framework; it raises the question of the importance of the mathematical formalism for the interpretation of space-time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A ubiquitous assessment of swimming velocity (main metric of the performance) is essential for the coach to provide a tailored feedback to the trainee. We present a probabilistic framework for the data-driven estimation of the swimming velocity at every cycle using a low-cost wearable inertial measurement unit (IMU). The statistical validation of the method on 15 swimmers shows that an average relative error of 0.1 ± 9.6% and high correlation with the tethered reference system (rX,Y=0.91 ) is achievable. Besides, a simple tool to analyze the influence of sacrum kinematics on the performance is provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new ambulatory technique for qualitative and quantitative movement analysis of the humerus is presented. 3D gyroscopes attached on the humerus were used to recognize the movement of the arm and to classify it as flexion, abduction and internal/external rotations. The method was first validated in a laboratory setting and then tested on 31 healthy volunteer subjects while carrying the ambulatory system during 8 h of their daily life. For each recording, the periods of sitting, standing and walking during daily activity were detected using an inertial sensor attached on the chest. During each period of daily activity the type of arm movement (flexion, abduction, internal/external rotation) its velocity and frequency (number of movement/hour) were estimated. The results showed that during the whole daily activity and for each activity (i.e. walking, sitting and walking) the frequency of internal/external rotation was significantly higher while the frequency of abduction was the lowest (P < 0.009). In spite of higher number of flexion, abduction and internal/external rotation in the dominant arm, we have not observed in our population a significant difference with the non-dominant arm, implying that in healthy subjects the arm dominance does not lie considerably on the number of movements. As expected, the frequency of the movement increased from sitting to standing and from standing to walking, while we provide a quantitative value of this change during daily activity. This study provides preliminary evidence that this system is a useful tool for objectively assessing upper-limb activity during daily activity. The results obtained with the healthy population could be used as control data to evaluate arm movement of patients with shoulder diseases during daily activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to extract multi-parametric measures characterizing different features of sit-to-stand (Si-St) and stand-to-sit (St-Si) transitions in older persons, using a single inertial sensor attached to the chest. Investigated parameters were transition's duration, range of trunk tilt, smoothness of transition pattern assessed by its fractal dimension, and trunk movement's dynamic described by local wavelet energy. A measurement protocol with a Si-St followed by a St-Si postural transition was performed by two groups of participants: the first group (N=79) included Frail Elderly subjects admitted to a post-acute rehabilitation facility and the second group (N=27) were healthy community-dwelling elderly persons. Subjects were also evaluated with Tinetti's POMA scale. Compared to Healthy Elderly persons, frail group at baseline had significantly longer Si-St (3.85±1.04 vs. 2.60±0.32, p=0.001) and St-Si (4.08±1.21 vs. 2.81±0.36, p=0.001) transition's duration. Frail older persons also had significantly decreased smoothness of Si-St transition pattern (1.36±0.07 vs. 1.21±0.05, p=0.001) and dynamic of trunk movement. Measurements after three weeks of rehabilitation in frail older persons showed that smoothness of transition pattern had the highest improvement effect size (0.4) and discriminative performance. These results demonstrate the potential interest of such parameters to distinguish older subjects with different functional and health conditions.