44 resultados para In vitro studies
Resumo:
Induction of drug-metabolizing enzymes (DMEs) is highly species-specific and can lead to drug-drug interaction and toxicities. In this series of studies we tested the species specificity of the antidiabetic drug development candidate and mixed peroxisome proliferator-activated receptor (PPAR) alpha/gamma agonist (S)-4-O-tolylsulfanyl-2-(4-trifluormethyl-phenoxy)-butyric acid (EMD 392949, EMD) with regard to the induction of gene expression and activities of DMEs, their regulators, and typical PPAR target genes. EMD clearly induced PPARalpha target genes in rats in vivo and in rat hepatocytes but lacked significant induction of DMEs, except for cytochrome P450 (P450) 4A. CYP2C and CYP3A were consistently induced in livers of EMD-treated monkeys. Interestingly, classic rodent peroxisomal proliferation markers were induced in monkeys after 17 weeks but not after a 4-week treatment, a fact also observed in human hepatocytes after 72 h but not 24 h of EMD treatment. In human hepatocyte cultures, EMD showed similar gene expression profiles and induction of P450 activities as in monkeys, indicating that the monkey is predictive for human P450 induction by EMD. In addition, EMD induced a similar gene expression pattern as the PPARalpha agonist fenofibrate in primary rat and human hepatocyte cultures. In conclusion, these data showed an excellent correlation of in vivo data on DME gene expression and activity levels with results generated in hepatocyte monolayer cultures, enabling a solid estimation of human P450 induction. This study also clearly highlighted major differences between primates and rodents in the regulation of major inducible P450s, with evidence of CYP3A and CYP2C inducibility by PPARalpha agonists in monkeys and humans.
Resumo:
Morphogens of the Wnt protein family are the secreted lipoglycoprotein ligands which initiate several pathways heavily involved in the coordination of various developmental stages of organisms in the majority of animal species. Deregulation of these pathways in the adult leads to formation and sustaining of multiple types of cancer. The latter notion is reinforced by the fact that the very discovery of the first Wnt ligand was due to its role as the causative factor of carcinogenic transformation (Nusse and Varmus, 1982). Nowadays our knowledge on Wnt signaling has "moved with the times" and these pathways were identified to be often crucial for tumor formation, its interactions with the microenvironment, and promotion of the metastases (Huang and Du, 2008; Zerlin et al., 2008; Jessen, 2009). Thus the relevance of the pathway as the target for drug development has further increased in the light of modern paradigms of the complex cancer treatments which target also spreading and growth- promoting factors of tumors by specific and highly efficient substances (Pavet et al., 2010). Presently the field of the Wnt-targeting drug research is almost solely dominated by assays based on transcriptional activation induced by the signaling. This approach resulted in development of a number of promising substances (Lee et al., 2011). Despite its effectiveness, the method nevertheless suffers from several drawbacks. Among the major ones is the fact that this approach is prone to identify compounds targeting rather downstream effectors of the pathway, which are indiscriminately used by all the subtypes of the Wnt signaling. Additionally, proteins which are involved in several signaling cascades and not just the Wnt pathway turn out as targets of the new compounds. These issues increase risks of side effects due to off-target interactions and blockade of the pathway in healthy cells. In the present work we put forward a novel biochemical approach for drug development on the Wnt pathway. It targets Frizzleds (Fzs) - a family of 7-transmbembrane proteins which serve as receptors for Wnt ligands. They offer unique properties for the development of highly specific and effective drugs as they control all branches of the Wnt signaling. Recent advances in the understanding of the roles of heterotrimeric G proteins downstream from Fzs (Katanaev et al., 2005; Liu et al., 2005; Jernigan et al., 2010) suggest application of enzymatic properties of these effectors to monitor the receptor-mediated events. We have applied this knowledge in practice and established a specific and efficient method based on utilization of a novel high-throughput format of the GTP-binding assay to follow the activation of Fzs. This type of assay is a robust and well-established technology for the research and screenings on the GPCRs (Harrison and Traynor, 2003). The conventional method of detection involves the radioactively labeled non-hydrolysable GTP analog [35S]GTPyS. Its application in the large-scale screenings is however problematic which promoted development of the novel non-radioactive GTP analog GTP-Eu. The new molecule employs phenomenon of the time-resolved fluorescence to provide sensitivity comparable to the conventional radioactive substance. Initially GTP-Eu was tested only in one of many possible types of GTP-binding assays (Frang et al., 2003). In the present work we expand these limits by demonstrating the general comparability of the novel label with the radioactive method in various types of assays. We provide a biochemical characterization of GTP-Eu interactions with heterotrimeric and small GTPases and a comparative analysis of the behavior of the new label in the assays involving heterotrimeric G protein effectors. These developments in the GTP-binding assay were then applied to monitor G protein activation by the Fz receptors. The data obtained in mammalian cultured cell lines provides for the first time an unambiguous biochemical proof for direct coupling of Fzs with G proteins. The specificity of this interaction has been confirmed by the experiments with the antagonists of Fz and by the pertussis toxin-mediated deactivation. Additionally we have identified the specificity of Wnt3a towards several members of the Fz family and analyzed the properties of human Fz-1 which was found to be the receptor coupled to the Gi/o family of G proteins. Another process playing significant role in the functioning of every GPCR is endocytosis. This phenomenon can also be employed for drug screenings on GPCRs (Bickle, 2010). In the present work we have demonstrated that Drosophila Fz receptors are involved in an unusual for many GPCRs manifestation of the receptor-mediated internalization. Through combination of biochemical approaches and studies on Drosophila as the model organism we have shown that direct interactions of the Fzs and the α-subunit of the heterotrimeric G protein Go with the small GTPase Rab5 regulate internalization of the receptor in early endosomes. We provide data uncovering the decisive role of this self-promoted endocytosis in formation of a proper signaling output in the canonical as well as planar cell polarity (PCP) pathways regulated by Fz. The results of this work thus establish a platform for the high-throughput screening to identify substances active in the cancer-related Wnt pathways. This methodology has been adjusted and applied to provide the important insights in Fz functioning and will be instrumental for further investigations on the Wnt-mediated pathways.
Resumo:
Iclaprim is a novel diaminopyrimidine antibiotic that is active against methicillin-resistant Staphylococcus aureus (MRSA). However, it is known that the activity of diaminopyrimidines against S. aureus is antagonized by thymidine through uptake and conversion to thymidylate by thymidine kinase. Unlike with humans, for whom thymidine levels are low, thymidine levels in rodents are high, thus precluding the accurate evaluation of iclaprim efficacy in animal models. We have studied the bactericidal activity of iclaprim against an isogenic pair of MRSA isolates, the wild-type parent AW6 and its thymidine kinase-deficient mutant AH1252, in an in vitro fibrin clot model. Clots, which were aimed at mimicking vegetation structure, were made from human or rat plasma containing either the parent AW6 or the mutant AH1252, and they were exposed to homologous serum supplemented with iclaprim (3.5 microg/ml), trimethoprim-sulfamethoxazole (TMP-SMX; 8/40 microg/ml), vancomycin (40 microg/ml), or saline, each of which was added one time for 48 h. In rat clots, iclaprim and TMP-SMX were bacteriostatic against the parent, AW6. In contrast, they were bactericidal (> or = 3 log10 CFU/clot killing of the original inoculum) against the mutant AH1252. Vancomycin was the most active drug against AW6 (P < 0.05), but it showed an activity similar those of iclaprim and TMP-SMX against AH1252. In human clots, iclaprim was bactericidal against both AW6 and AH1252 strains and was as effective as TMP-SMX and vancomycin (P > 0.05). Future studies of animals using simulated human kinetics of iclaprim and thymidine kinase-deficient MRSA, which eliminate the thymidine-induced confounding effect, are warranted to support the use of iclaprim in the treatment of severe MRSA infections in humans.
Resumo:
For enterococcal implant-associated infections, the optimal treatment regimen has not been defined. We investigated the activity of daptomycin, vancomycin, and gentamicin (and their combinations) against Enterococcus faecalis in vitro and in a foreign-body infection model. Antimicrobial activity was investigated by time-kill and growth-related heat production studies (microcalorimetry) as well as with a guinea pig model using subcutaneously implanted cages. Infection was established by percutaneous injection of E. faecalis in the cage. Antibiotic treatment for 4 days was started 3 h after infection. Cages were removed 5 days after end of treatment to determine the cure rate. The MIC, the minimal bactericidal concentration (MBC) in the logarithmic phase, and the MBC in the stationary phase were 1.25, 5, and >20 μg/ml for daptomycin, 1, >64, and >64 μg/ml for vancomycin, and 16, 32, and 4 μg/ml for gentamicin, respectively. In vitro, gentamicin at subinhibitory concentrations improved the activity against E. faecalis when combined with daptomycin or vancomycin in the logarithmic and stationary phases. In the animal model, daptomycin cured 25%, vancomycin 17%, and gentamicin 50% of infected cages. In combination with gentamicin, the cure rate for daptomycin increased to 55% and that of vancomycin increased to 33%. In conclusion, daptomycin was more active than vancomycin against adherent E. faecalis, and its activity was further improved by the addition of gentamicin. Despite a short duration of infection (3 h), the cure rates did not exceed 55%, highlighting the difficulty of eradicating E. faecalis from implants already in the early stage of implant-associated infection.
Resumo:
Adherence to fibrinogen and fibronectin plays a crucial role in Staphylococcus aureus experimental endocarditis. Previous genetic studies have shown that infection and carriage isolates do not systematically differ in their virulence-related genes, including genes conferring adherence, such as clfA and fnbA. We set out to determine the range of adherence phenotypes in carriage isolates of S. aureus, to compare the adherence of these isolates to the adherence of infection isolates, and to determine the relationship between adherence and infectivity in a rat model of experimental endocarditis. A total of 133 healthy carriage isolates were screened for in vitro adherence to fibrinogen and fibronectin, and 30 isolates were randomly chosen for further investigation. These 30 isolates were compared to 30 infective endocarditis isolates and 30 blood culture isolates. The infectivities of the carriage isolates, which displayed either extremely low or high adherence to fibrinogen and fibronectin, were tested using a rat model of experimental endocarditis. The levels of adherence to both fibrinogen and fibronectin were very similar for isolates from healthy carriers and members of the two groups of infection isolates. All three groups of isolates showed a wide range of adherence to fibrinogen and fibronectin. Moreover, the carriage isolates that showed minimal adherence and the carriage isolates that showed strong adherence had the same infectivity in experimental endocarditis. Adherence was proven to be important for pathogenesis in experimental endocarditis, but even the least adherent carriage strains had the ability to induce infection. We discuss the roles of differential gene expression, human host factors, and gene redundancy in resolving this apparent paradox.
Resumo:
Epidemiological studies in urban areas have linked increasing respiratory and cardiovascular pathologies with atmospheric particulate matter (PM) from anthropic activities. However, the biological fate of metal-rich PM industrial emissions in urban areas of developed countries remains understudied. Lead toxicity and bioaccessibility assessments were therefore performed on emissions from a lead recycling plant, using complementary chemical acellular tests and toxicological assays, as a function of PM size (PM(10-2.5), PM(2.5-1) and PM(1)) and origin (furnace, refining and channeled emissions). Process PM displayed differences in metal content, granulometry, and percentage of inhalable fraction as a function of their origin. Lead gastric bioaccessibility was relatively low (maximum 25%) versus previous studies; although, because of high total lead concentrations, significant metal quantities were solubilized in simulated gastrointestinal fluids. Regardless of origin, the finest PM(1) particles induced the most significant pro-inflammatory response in human bronchial epithelial cells. Moreover, this biological response correlated with pro-oxidant potential assay results, suggesting some biological predictive value for acellular tests. Pulmonary effects from lead-rich PM could be driven by thiol complexation with either lead ions or directly on the particulate surface. Finally, health concern of PM was discussed on the basis of pro-inflammatory effects, accellular test results, and PM size distribution.
Resumo:
BACKGROUND: Plasmid DNA vaccination is a promising approach, but studies in non-human primates and humans failed to achieve protective immunity. To optimise this technology further with focus on pulmonary administration, we developed and evaluated an adjuvant-equipped DNA carrier system based on the biopolymer chitosan. In more detail, the uptake and accompanying immune response of adjuvant Pam3Cys (Toll-like receptor-1/2 agonist) decorated chitosan DNA nanoparticles (NP) were explored by using a three-dimensional (3D) cell culture model of the human epithelial barrier. Pam3Cys functionalised and non-functionalised chitosan DNA NP were sprayed by a microsprayer onto the surface of 3D cell cultures and uptake of NP by epithelial and immune cells (blood monocyte-derived dendritic cells (MDDC) and macrophages (MDM)) was visualised by confocal laser scanning microscopy. In addition, immune activation by TLR pathway was monitored by analysis of interleukin-8 and tumor necrosis factor-α secretions (ELISA). RESULTS: At first, a high uptake rate into antigen-presenting cells (MDDC: 16-17%; MDM: 68-75%) was obtained. Although no significant difference in uptake patterns was observed for Pam3Cys adjuvant functionalised and non-functionalised DNA NP, ELISA of interleukin-8 and tumor necrosis factor-α demonstrated clearly that Pam3Cys functionalisation elicited an overall higher immune response with the ranking of Pam3Cys chitosan DNA NPâeuro0/00>âeuro0/00chitosan DNA NPâeuro0/00=âeuro0/00DNA unloaded chitosan NPâeuro0/00>âeuro0/00control (culture medium). CONCLUSIONS: Chitosan-based DNA delivery enables uptake into abluminal MDDC, which are the most immune competent cells in the human lung for the induction of antigen-specific immunity. In addition, Pam3Cys adjuvant functionalisation of chitosan DNA NP enhances significantly an environment favoring recruitment of immune cells together with a Th1 associated (cellular) immune response due to elevated IL-8 and TNF-α levels. The latter renders this DNA delivery approach attractive for potential DNA vaccination against intracellular pathogens in the lung (e.g., Mycobacterium tuberculosis or influenza virus).
Resumo:
The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF) and plant roots. The fungi provide the plant with inorganic phosphate (P). The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future.
Resumo:
Daptomycin is bactericidal against meticillin-resistant Staphylococcus aureus (MRSA), glycopeptide-intermediate-resistant S. aureus (GISA) and vancomycin-susceptible and -resistant enterococci. However, selection for daptomycin-resistant derivatives has occasionally been reported during therapy in humans. Here we evaluate whether selection for daptomycin-resistant S. aureus or enterococci could be prevented in vitro by combining daptomycin with amoxicillin/clavulanic acid, ampicillin, gentamicin or rifampicin. Six strains of S. aureus (four MRSA and two GISA) and four strains of enterococci (two Enterococcus faecalis and two Enterococcus faecium) were serially exposed in broth to two-fold stepwise increasing concentrations of daptomycin alone or in combination with a fixed concentration [0.25x minimum inhibitory concentration (MIC)] of either of the second agents. The daptomycin MIC was examined after each cycle. Exposure to daptomycin alone gradually selected for S. aureus and enterococci with an increased MIC. Gentamicin did not prevent the emergence of daptomycin-resistant bacteria. Rifampicin was also unable to prevent daptomycin resistance, although resistance was slightly delayed. In contrast, amoxicillin/clavulanic acid or ampicillin prevented or greatly delayed the selection of daptomycin-resistant mutants in S. aureus and enterococci, respectively. Addition of amoxicillin/clavulanic acid or ampicillin to daptomycin prevents, or greatly delays, daptomycin resistance in vitro. Future studies in animal models are needed to predict the utility of these combinations in humans.
Resumo:
Background: Bacteria form biofilms on the surface of orthopaedic devices, causing persistent infections. Monitoring biofilm formation on bone grafts and bone substitutes is challenging due to heterogeneous surface characteristics. We analyzed various bone grafts and bone substitutes regarding their propensity for in-vitro biofilm formation caused by S. aureus and S. epidermidis. Methods: Beta-tricalciumphosphate (b-TCP, ChronOsTM), processed human spongiosa (TutoplastTM) and PMMA (PalacosTM) were investigated. PE was added as a growth control. As test strains S. aureus (ATCC 29213) and S. epidermidis RP62A (ATCC 35984) were used. Test materials were incubated with 105 cfu/ml. After 24 h, test materials were removed and washed, followed by a standardised sonication protocol. The resulting sonication fluid was plated and bacterial counts were enumerated and expressed as cfu/sample. Sonicated samples were transferred to a microcalorimeter (TA Instrument) and heat flow monitored over a 24 h period with a precision of 0.0001°C and a sensitiviy of 200 μW. Experiments were performed in triplicates to calculate the mean ± SD. One-way ANOVA analysis was used for statistical analysis. Results: Bacterial counts (log10 cfu/sample) were highest on b-TCP (S. aureus 7.67 ± 0.17; S. epidermidis 8.14 ± 0.05) while bacterial density (log10 cfu/surface) was highest on PMMA (S. aureus 6.12 ± 0.2, S. epidermidis 7.65 ± 0.13). Detection time for S. aureus biofilms was shorter for the porous materials (b-TCP and Tutoplast, p <0.001) compared to the smooth materials (PMMA and PE) with no differences between b-TCP and TutoplastTM (p >0.05) or PMMA and PE (p >0.05). In contrast, for S. epidermidis biofilms the detection time was different (p <0.001) between all materials except between Tutoplast and PE (p >0.05). Conclusion: Our results demonstrate biofilm formation with both strains on all tested materials. Microcalorimetry was able to detect quantitatively the amount of biofilm. Further studies are needed to see whether calorimetry is a suitable tool also to monitor approaches to prevent and treat infections associated with bone grafts and bone substitutes.
Resumo:
The widespread incidence of enterococci resistant to ampicillin, vancomycin and aminoglycosides, the first-line anti-enterococcal antibiotics, has made the treatment of severe enterococcal infections difficult and alternatives should be explored. We investigated the activity of daptomycin combined with linezolid against three Enterococcus faecalis and four Enterococcus faecium strains resistant to standard drugs used for therapy. Minimum inhibitory concentrations (MICs) were determined by the broth dilution method. Drug interactions were assessed by the checkerboard and time-kill methods. Synergy was defined by a fractional inhibitory concentration index (FICI) of ≤0.5 or a ≥2 log10 CFU/mL killing at 24 h with the combination in comparison with killing by the most active single agent. Indifference was defined by a FICI > 0.5-4.0 or a 1-2 log10 CFU/mL killing compared with the most active single agent. MICs of daptomycin were 2-4 μg/mL for E. faecalis and 2-8 μg/mL for E. faecium. MICs of linezolid were 1-2 μg/mL for all bacteria. In the checkerboard assay, five isolates showed synergism (FICI < 0.5) and two showed indifference (FICIs of 0.53 and 2). Killing studies revealed synergy of daptomycin plus linezolid against four isolates (2.2-3.7 log10 CFU/mL kill) and indifference (1.1-1.6 log10 CFU/mL kill) for the other three strains. Antagonism was not observed. In conclusion, the combination of daptomycin and linezolid had a synergistic or indifferent effect against multidrug-resistant enterococci. Additional studies are needed to explore the potential of this combination for severe enterococcal infections when first-line antibiotic combinations cannot be used.
Resumo:
There are only a few studies on the ontogeny and differentiation process of the hypothalamic supraoptic-paraventriculo-neurohypophysial neurosecretory system. In vitro neuron survival improves if cells are of embryonic origin; however, surviving hypothalamic neurons in culture were found to express small and minimal amounts of arginine-vasopressin (AVP) and oxytocin (OT), respectively. The aim of this study was to develop a primary neuronal culture design applicable to the study of magnocellular hypothalamic system functionality. For this purpose, a primary neuronal culture was set up after mechanical dissociation of sterile hypothalamic blocks from 17-day-old Sprague-Dawley rat embryos (E17) of both sexes. Isolated hypothalamic cells were cultured with supplemented (B27)-NeuroBasal medium containing an agent inhibiting non-neuron cell proliferation. The neurosecretory process was characterized by detecting AVP and OT secreted into the medium on different days of culture. Data indicate that spontaneous AVP and OT release occurred in a culture day-dependent fashion, being maximal on day 13 for AVP, and on day 10 for OT. Interestingly, brain-derived neurotrophic factor (BDNF) and Angiotensin II (A II) were able to positively modulate neuropeptide output. Furthermore, on day 17 of culture, non-specific (high-KCl) and specific (Angiotensin II) stimuli were able to significantly (P < 0.05) enhance the secretion of both neuropeptides over respective baselines. This study suggests that our experimental design is useful for the study of AVP- and OT-ergic neuron functionality and that BDNF and A II are positive modulators of embryonic hypothalamic cell development.
Resumo:
SUMMARY IN FRENCH Les cellules souches sont des cellules indifférenciées capables a) de proliférer, b) de s'auto¬renouveller, c) de produire des cellules différenciées, postmitotiques et fonctionnelles (multipotencialité), et d) de régénérer le tissu après des lésions. Par exemple, les cellules de souches hematopoiétiques, situées dans la moelle osseuse, peuvent s'amplifier, se diviser et produire diverses cellules différenciées au cours de la vie, les cellules souches restant dans la moelle osseuse et consentant leur propriété. Les cellules souches intestinales, situées dans la crypte des microvillosités peuvent également régénérer tout l'intestin au cours de la vie. La rétine se compose de six classes de neurones et d'un type de cellule gliale. Tous ces types de cellules sont produits par un progéniteur rétinien. Le pic de production des photorécepteurs se situe autour des premiers jours postnatals chez la souris. A cette période la rétine contient les cellules hautement prolifératives. Dans cette étude, nous avons voulu analyser le phénotype de ces cellules et leur potentiel en tant que cellules souches ou progénitrices. Nous nous sommes également concentrés sur l'effet de certains facteurs épigéniques sur leur destin cellulaire. Nous avons observé que toutes les cellules prolifératives isolées à partir de neurorétines postnatales de souris expriment le marqueur de glie radiaire RC2, ainsi que des facteurs de transcription habituellement trouvés dans la glie radiaire (Mash1, Pax6), et répondent aux critères des cellules souches : une capacité élevée d'expansion, un état indifférencié, la multipotencialité (démontrée par analyse clonale). Nous avons étudié la différentiation des cellules dans différents milieux de culture. En l'absence de sérum, l'EGF induit l'expression de la β-tubulin-III, un marqueur neuronal, et l'acquisition d'une morphologie neuronale, ceci dans 15% des cellules présentes. Nous avons également analysé la prolifération de cellules. Seulement 20% des cellules incorporent le bromodéoxyuridine (BrdU) qui est un marqueur de division cellulaire. Ceci démontre que l'EGF induit la formation des neurones sans une progression massive du cycle cellulaire. Par ailleurs, une stimulation de 2h d'EGF est suffisante pour induire la différentiation neuronale. Certains des neurones formés sont des cellules ganglionnaires rétiniennes (GR), comme l'indique l'expression de marqueurs de cellules ganglionnaires (Ath5, Brn3b et mélanopsine), et dans de rare cas d'autres neurones rétiniens ont été observés (photorécepteurs (PR) et cellules bipolaires). Nous avons confirmé que les cellules souches rétiniennes tardives n'étaient pas restreintes au cours du temps et qu'elles conservent leur multipotencialité en étant capables de générer des neurones dits précoces (GR) ou tardifs (PR). Nos résultats prouvent que l'EGF est non seulement un facteur contrôlant le développement glial, comme précédemment démontré, mais également un facteur efficace de différentiation pour les neurones rétiniens, du moins in vitro. D'autre part, nous avons voulu établir si l'oeil adulte humain contient des cellules souches rétiniennes (CSRs). L'oeil de certains poissons ou amphibiens continue de croître pendant l'âge adulte du fait de l'activité persistante des cellules souches rétiniennes. Chez les poissons, le CSRs se situe dans la marge ciliaire (CM) à la périphérie de la rétine. Bien que l'oeil des mammifères ne se développe plus pendant la vie d'adulte, plusieurs groupes ont prouvé que l'oeil de mammifères adultes contient des cellules souches rétiniennes également dans la marge ciliaire plus précisément dans l'épithélium pigmenté et non dans la neurorétine. Ces CSRs répondent à certains critères des cellules souches. Nous avons identifié et caractérisé les cellules souches rétiniennes résidant dans l'oeil adulte humain. Nous avons prouvé qu'elles partagent les mêmes propriétés que leurs homologues chez les rongeurs c.-à-d. auto-renouvellement, amplification, et différenciation en neurones rétiniens in vitro et in vivo (démontré par immunocoloration et microarray). D'autre part, ces cellules peuvent être considérablement amplifiées, tout en conservant leur potentiel de cellules souches, comme indiqué par l'analyse de leur profil d'expression génique (microarray). Elles expriment également des gènes communs à diverses cellules souches: nucleostemin, nestin, Brni1, Notch2, ABCG2, c-kit et son ligand, aussi bien que cyclin D3 qui agit en aval de c-kit. Nous avons pu montré que Bmi1et Oct4 sont nécessaires pour la prolifération des CSRs confortant leur propriété de cellules souches. Nos données indiquent que la neurorétine postnatale chez la souris et l'épithélium pigmenté de la marge ciliaire chez l'humain adulte contiennent les cellules souches rétiniennes. En outre, nous avons développé un système qui permet d'amplifier et de cultiver facilement les CSRs. Ce modèle permet de disséquer les mécanismes impliqués lors de la retinogenèse. Par exemple, ce système peut être employé pour l'étude des substances ou des facteurs impliqués, par exemple, dans la survie ou dans la génération des cellules rétiniennes. Il peut également aider à disséquer la fonction de gènes ou les facteurs impliqués dans la restriction ou la spécification du destin cellulaire. En outre, dans les pays occidentaux, la rétinite pigmentaire (RP) touche 1 individu sur 3500 et la dégénérescence maculaire liée à l'âge (DMLA) affecte 1 % à 3% de la population âgée de plus de 60 ans. La génération in vitro de cellules rétiniennes est aussi un outil prometteur pour fournir une source illimitée de cellules pour l'étude de transplantation cellulaire pour la rétine. SUMMARY IN ENGLISH Stem cells are defined as undifferentiated cells capable of a) proliferation, b) self maintenance (self-renewability), c) production of many differentiated functional postmitotic cells (multipotency), and d) regenerating tissue after injury. For instance, hematopoietic stem cells, located in bone marrow, can expand, divide and generate differentiated cells into the diverse lineages throughout life, the stem cells conserving their status. In the villi crypt, the intestinal stem cells are also able to regenerate the intestine during their life time. The retina is composed of six classes of neurons and one glial cell. All these cell types are produced by the retinal progenitor cell. The peak of photoreceptor production is reached around the first postnatal days in rodents. Thus, at this stage the retina contains highly proliferative cells. In our research, we analyzed the phenotype of these cells and their potential as possible progenitor or stem cells. We also focused on the effect of epigenic factor(s) and cell fate determination. All the proliferating cells isolated from mice postnatal neuroretina harbored the radial glia marker RC2, expressed transcription factors usually found in radial glia (Mash 1, Pax6), and met the criteria of stem cells: high capacity of expansion, maintenance of an undifferentiated state, and multipotency demonstrated by clonal analysis. We analyzed the differentiation seven days after the transfer of the cells in different culture media. In the absence of serum, EGF led to the expression of the neuronal marker β-tubulin-III, and the acquisition of neuronal morphology in 15% of the cells. Analysis of cell proliferation by bromodeoxyuridine incorporation revealed that EGF mainly induced the formation of neurons without stimulating massively cell cycle progression. Moreover, a pulse of 2h EGF stimulation was sufficient to induce neuronal differentiation. Some neurons were committed to the retinal ganglion cell (RGC) phenotype, as revealed by the expression of retinal ganglion markers (Ath5, Brn3b and melanopsin), and in few cases to other retinal phenotypes (photoreceptors (PRs) and bipolar cells). We confirmed that the late RSCs were not restricted over-time and conserved multipotentcy characteristics by generating retinal phenotypes that usually appear at early (RGC) or late (PRs) developmental stages. Our results show that EGF is not only a factor controlling glial development, as previously shown, but also a potent differentiation factor for retinal neurons, at least in vitro. On the other hand, we wanted to find out if the adult human eye contains retina stem cells. The eye of some fishes and amphibians continues to grow during adulthood due to the persistent activity of retinal stem cells (RSCs). In fish, the RSCs are located in the ciliary margin zone (CMZ) at the periphery of the retina. Although, the adult mammalian eye does not grow during adult life, several groups have shown that the adult mouse eye contains retinal stem cells in the homologous zone (i.e. the ciliary margin), in the pigmented epithelium and not in the neuroretina. These RSCs meet some criteria of stem cells. We identified and characterized the human retinal stem cells. We showed that they posses the same features as their rodent counterpart i.e. they self-renew, expand and differentiate into retinal neurons in vitro and in vivo (indicated by immunostaining and microarray analysis). Moreover, they can be greatly expanded while conserving their sternness potential as revealed by the gene expression profile analysis (microarray approach). They also expressed genes common to various stem cells: nucleostemin, nestin, Bmil , Notch2, ABCG2, c-kit and its ligand, as well as cyclin D3 which acts downstream of c-kit. Furthermore, Bmil and Oct-4 were required for RSC proliferation reinforcing their stem cell identity. Our data indicate that the mice postnatal neuroretina and the adult pigmented epithelium of adult human ciliary margin contain retinal stem cells. We developed a system to easily expand and culture RSCs that can be used to investigate the retinogenesis. For example, it can help to screen drugs or factors involved, for instance, in the survival or generation of retinal cells. This could help to dissect genes or factors involved in the restriction or specification of retinal cell fate. In Western countries, retinitis pigmentosa (RP) affects 1 out of 3'500 individuals and age-related macula degeneration (AMD) strikes 1 % to 3% of the population over 60. In vitro generation of retinal cells is thus a promising tool to provide an unlimited cell source for cellular transplantation studies in the retina.
Resumo:
OBJECTIVE: To study the benefits of a low-dose stimulation (LDS) protocol with purified urinary follicle-stimulating hormone in patients with polycystic ovaries who have presented previously with a very high ovarian response to a standard hMG stimulation. DESIGN: Cohort study. SETTING: Fertility center in a university hospital. PATIENT(S): Sixty-one patients involved in an IVF/ICSI program from January 1995 to December 1996. INTERVENTION(S): The patients were first stimulated with a standard protocol using hMG and presented with a very high ovarian response. These patients were then stimulated a second time using a low-dose protocol. Cryopreserved embryos were transferred in later artificial or natural cycles until to December 1999. MAIN OUTCOME MEASURE(S): Number of gonadotropin ampules; estradiol level on the day of ovulation induction; follicles, oocytes, and cryopreserved zygotes; fertilization, implantation, and pregnancy rates; and number of ovarian hyperstimulation syndromes (OHSS). RESULT(S): The number of ampules used, the estradiol level reached, and the number of oocytes obtained were significantly lower under the LDS than the standard protocol. High implantation (21.8%) and clinical pregnancy (38.4%) rates were obtained after LDS. The cumulated deliveries per cycle started and per patient were, respectively, 41.6% and 52.5%. Five patients suffered OHSS with the standard protocol, and none with the LDS. CONCLUSION(S): The LDS protocol offers a safe and efficient treatment for patients who present with echographic polycystic ovaries and are at risk of an excessive ovarian response to standard IVF stimulation protocols.
Resumo:
This is the report of the first workshop on Incorporating In Vitro Alternative Methods for Developmental Neurotoxicity (DNT) Testing into International Hazard and Risk Assessment Strategies, held in Ispra, Italy, on 19-21 April 2005. The workshop was hosted by the European Centre for the Validation of Alternative Methods (ECVAM) and jointly organized by ECVAM, the European Chemical Industry Council, and the Johns Hopkins University Center for Alternatives to Animal Testing. The primary aim of the workshop was to identify and catalog potential methods that could be used to assess how data from in vitro alternative methods could help to predict and identify DNT hazards. Working groups focused on two different aspects: a) details on the science available in the field of DNT, including discussions on the models available to capture the critical DNT mechanisms and processes, and b) policy and strategy aspects to assess the integration of alternative methods in a regulatory framework. This report summarizes these discussions and details the recommendations and priorities for future work.