86 resultados para IOL power calculation
Resumo:
This prospective study applies an extended Information-Motivation-Behavioural Skills (IMB) model to establish predictors of HIV-protection behaviour among HIV-positive men who have sex with men (MSM) during sex with casual partners. Data have been collected from anonymous, self-administered questionnaires and analysed by using descriptive and backward elimination regression analyses. In a sample of 165 HIV-positive MSM, 82 participants between the ages of 23 and 78 (M=46.4, SD=9.0) had sex with casual partners during the three-month period under investigation. About 62% (n=51) have always used a condom when having sex with casual partners. From the original IMB model, only subjective norm predicted condom use. More important predictors that increased condom use were low consumption of psychotropics, high satisfaction with sexuality, numerous changes in sexual behaviour after diagnosis, low social support from friends, alcohol use before sex and habitualised condom use with casual partner(s). The explanatory power of the calculated regression model was 49% (p<0.001). The study reveals the importance of personal and social resources and of routines for condom use, and provides information for the research-based conceptualisation of prevention offers addressing especially people living with HIV ("positive prevention").
Resumo:
The quantity of interest for high-energy photon beam therapy recommended by most dosimetric protocols is the absorbed dose to water. Thus, ionization chambers are calibrated in absorbed dose to water, which is the same quantity as what is calculated by most treatment planning systems (TPS). However, when measurements are performed in a low-density medium, the presence of the ionization chamber generates a perturbation at the level of the secondary particle range. Therefore, the measured quantity is close to the absorbed dose to a volume of water equivalent to the chamber volume. This quantity is not equivalent to the dose calculated by a TPS, which is the absorbed dose to an infinitesimally small volume of water. This phenomenon can lead to an overestimation of the absorbed dose measured with an ionization chamber of up to 40% in extreme cases. In this paper, we propose a method to calculate correction factors based on the Monte Carlo simulations. These correction factors are obtained by the ratio of the absorbed dose to water in a low-density medium □D(w,Q,V1)(low) averaged over a scoring volume V₁ for a geometry where V₁ is filled with the low-density medium and the absorbed dose to water □D(w,QV2)(low) averaged over a volume V₂ for a geometry where V₂ is filled with water. In the Monte Carlo simulations, □D(w,QV2)(low) is obtained by replacing the volume of the ionization chamber by an equivalent volume of water, according to the definition of the absorbed dose to water. The method is validated in two different configurations which allowed us to study the behavior of this correction factor as a function of depth in phantom, photon beam energy, phantom density and field size.
Resumo:
A healthy 60-year-old woman had uneventful bilateral sequential cataract surgery with diffractive multifocal intraocular lens (IOL) implantation. Immediately after surgery in the first eye, the patient complained of right monocular oscillopsia during motion. Surgery in the second eye was followed by the same symptoms. Ocular motility was normal. Any movement of head or eye was accompanied by oscillopsia, disappearing immediately upon cessation of movement. Slitlamp examination revealed pseudophacodonesis, without obvious zonular laxity. We postulate that the rapid oscillation of an unsteady multifocal IOL during head or eye movement caused the optical steps to pass in front of the visual axis. Cataract surgeons must be aware of this potential, but rare, complication before deciding to implant a multifocal IOL.
Resumo:
We used incentivized experimental games to manipulate leader power-the number of followers and the discretion leaders had to enforce their will. Leaders had complete autonomy in deciding payouts to themselves and their followers. Although leaders could make prosocial decisions to benefit the public good they could also abuse their power by invoking antisocial decisions, which reduced the total payouts to the group but increased leader's earnings. In Study 1 (N = 478), we found that both amount of followers and discretionary choices independently predicted leader corruption. In Study 2 (N = 240), we examined how power and individual differences (e.g., personality, hormones) affected leader corruption over time; power interacted with testosterone in predicting corruption, which was highest when leader power and baseline testosterone were both high. Honesty predicted initial level of leader antisocial decisions; however, honesty did not shield leaders from the corruptive effect of power.
Resumo:
Purpose: IOL centration and stability after cataract surgery is of high interest for cataract surgeons and IOL-producing companies. We present a new imaging software to evaluate the centration of the rhexis and the centration of the IOL after cataract surgery.Methods: We developed, in collaboration with the Biomedical Imaging Group (BIG), EPFL, Lausanne, a new working tool in order to assess precisely outcomes after IOL-implantation, such as ideal capsulorhexis and IOL-centration. The software is a plug-in of ImageJ, a general-purpose image processing and image-analysis package. The specifications of this software are: evaluation of the rhexis-centration and evaluation the position of the IOL in the posterior chamber. The end points are to analyze the quality of the centration of a rhexis after cataract surgery, the deformation of the rhexis with capsular bag retraction and the centration of the IOL after implantation.Results: This software delivers tools to interactively measure the distances between limbus, IOL and capsulorhexis and its changes over time. The user is invited to adjust nodes of three radial curves for the limbus, rhexis and the optic of the IOL. The radial distances of the curves are computed to evaluate the IOL implantation. The user is also able to define patterns for ideal capsulorhexis and optimal IOL-centration. We are going to present examples of calculations after cataract surgery.Conclusions: Evaluation of the centration of the rhexis and of the IOL after cataract surgery is an important end point for optimal IOL implantation after cataract surgery. Especially multifocal or accommodative lenses need a precise position in the bag with a good stability over time. This software is able to evaluate these parameters just after the surgery but also its changes over time. The results of these evaluations can lead to an optimizing of surgical procedures and materials.