18 resultados para INFRARED
Resumo:
Metastatic melanomas are frequently refractory to most adjuvant therapies such as chemotherapies and radiotherapies. Recently, immunotherapies have shown good results in the treatment of some metastatic melanomas. Immune cell infiltration in the tumor has been associated with successful immunotherapy. More generally, tumor infiltrating lymphocytes (TILs) in the primary tumor and in metastases of melanoma patients have been demonstrated to correlate positively with favorable clinical outcomes. Altogether, these findings suggest the importance of being able to identify, quantify and characterize immune infiltration at the tumor site for a better diagnostic and treatment choice. In this paper, we used Fourier Transform Infrared (FTIR) imaging to identify and quantify different subpopulations of T cells: the cytotoxic T cells (CD8+), the helper T cells (CD4+) and the regulatory T cells (T reg). As a proof of concept, we investigated pure populations isolated from human peripheral blood from 6 healthy donors. These subpopulations were isolated from blood samples by magnetic labeling and purities were assessed by Fluorescence Activated Cell Sorting (FACS). The results presented here show that Fourier Transform Infrared (FTIR) imaging followed by supervised Partial Least Square Discriminant Analysis (PLS-DA) allows an accurate identification of CD4+ T cells and CD8+ T cells (>86%). We then developed a PLS regression allowing the quantification of T reg in a different mix of immune cells (e.g. Peripheral Blood Mononuclear Cells (PBMCs)). Altogether, these results demonstrate the sensitivity of infrared imaging to detect the low biological variability observed in T cell subpopulations.
Resumo:
This study investigated fingermark residues using Fourier transform infrared microscopy (μ- FTIR) in order to obtain fundamental information about the marks' initial composition and aging kinetics. This knowledge would be an asset for fundamental research on fingermarks, such as for dating purposes. Attenuated Total Reflection (ATR) and single-point reflection modes were tested on fresh fingermarks. ATR proved to be better suited and this mode was subsequently selected for further aging studies. Eccrine and sebaceous material was found in fresh and aged fingermarks and the spectral regions 1000-1850 cm-1 and 2700-3600 cm-1 were identified as the most informative. The impact of substrates (aluminium and glass slides) and storage conditions (storage in the light and in the dark) on fingermark aging was also studied. Chemometric analyses showed that fingermarks could be grouped according to their age regardless of the substrate when they were stored in an open box kept in an air-conditioned laboratory at around 20°C next to a window. On the contrary, when fingermarks were stored in the dark, only specimens deposited on the same substrate could be grouped by age. Thus, the substrate appeared to influence aging of fingermarks in the dark. Furthermore, PLS regression analyses were conducted in order to study the possibility of modelling fingermark aging for potential fingermark dating applications. The resulting models showed an overall precision of ±3 days and clearly demonstrated their capability to differentiate older fingermarks (20 and 34-days old) from newer ones (1, 3, 7 and 9-days old) regardless of the substrate and lighting conditions. These results are promising from a fingermark dating perspective. Further research is required to fully validate such models and assess their robustness and limitations in uncontrolled casework conditions.