31 resultados para Hydrological forecasting.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relationships between porosity and hydraulic conductivity tend to be strongly scale- and site-dependent and are thus very difficult to establish. As a result, hydraulic conductivity distributions inferred from geophysically derived porosity models must be calibrated using some measurement of aquifer response. This type of calibration is potentially very valuable as it may allow for transport predictions within the considered hydrological unit at locations where only geophysical measurements are available, thus reducing the number of well tests required and thereby the costs of management and remediation. Here, we explore this concept through a series of numerical experiments. Considering the case of porosity characterization in saturated heterogeneous aquifers using crosshole ground-penetrating radar and borehole porosity log data, we use tracer test measurements to calibrate a relationship between porosity and hydraulic conductivity that allows the best prediction of the observed hydrological behavior. To examine the validity and effectiveness of the obtained relationship, we examine its performance at alternate locations not used in the calibration procedure. Our results indicate that this methodology allows us to obtain remarkably reliable hydrological predictions throughout the considered hydrological unit based on the geophysical data only. This was also found to be the case when significant uncertainty was considered in the underlying relationship between porosity and hydraulic conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the regional scale represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed a downscaling procedure based on a non-linear Bayesian sequential simulation approach. The basic objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity, which is available throughout the model space. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariate kernel density function. This method is then applied to the stochastic integration of low-resolution, re- gional-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities. Finally, the overall viability of this downscaling approach is tested and verified by performing and comparing flow and transport simulation through the original and the downscaled hydraulic conductivity fields. Our results indicate that the proposed procedure does indeed allow for obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Avalanche forecasting is a complex process involving the assimilation of multiple data sources to make predictions over varying spatial and temporal resolutions. Numerically assisted forecasting often uses nearest neighbour methods (NN), which are known to have limitations when dealing with high dimensional data. We apply Support Vector Machines to a dataset from Lochaber, Scotland to assess their applicability in avalanche forecasting. Support Vector Machines (SVMs) belong to a family of theoretically based techniques from machine learning and are designed to deal with high dimensional data. Initial experiments showed that SVMs gave results which were comparable with NN for categorical and probabilistic forecasts. Experiments utilising the ability of SVMs to deal with high dimensionality in producing a spatial forecast show promise, but require further work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integration of geophysical data into the subsurface characterization problem has been shown in many cases to significantly improve hydrological knowledge by providing information at spatial scales and locations that is unattainable using conventional hydrological measurement techniques. In particular, crosshole ground-penetrating radar (GPR) tomography has shown much promise in hydrology because of its ability to provide highly detailed images of subsurface radar wave velocity, which is strongly linked to soil water content. Here, we develop and demonstrate a procedure for inverting together multiple crosshole GPR data sets in order to characterize the spatial distribution of radar wave velocity below the water table at the Boise Hydrogeophysical Research Site (BHRS) near Boise, Idaho, USA. Specifically, we jointly invert 31 intersecting crosshole GPR profiles to obtain a highly resolved and consistent radar velocity model along the various profile directions. The model is found to be strongly correlated with complementary neutron porosity-log data and is further corroborated by larger-scale structural information at the BHRS. This work is an important prerequisite to using crosshole GPR data together with existing hydrological measurements for improved groundwater flow and contaminant transport modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper asks a simple question: if humans and their actions co-evolve with hydrological systems (Sivapalan et al., 2012), what is the role of hydrological scientists, who are also humans, within this system? To put it more directly, as traditionally there is a supposed separation of scientists and society, can we maintain this separation as socio-hydrologists studying a socio-hydrological world? This paper argues that we cannot, using four linked sections. The first section draws directly upon the concern of science-technology studies to make a case to the (socio-hydrological) community that we need to be sensitive to constructivist accounts of science in general and socio-hydrology in particular. I review three positions taken by such accounts and apply them to hydrological science, supported with specific examples: (a) the ways in which scientific activities frame socio-hydrological research, such that at least some of the knowledge that we obtain is constructed by precisely what we do; (b) the need to attend to how socio-hydrological knowledge is used in decision-making, as evidence suggests that hydrological knowledge does not flow simply from science into policy; and (c) the observation that those who do not normally label themselves as socio-hydrologists may actually have a profound knowledge of socio-hydrology. The second section provides an empirical basis for considering these three issues by detailing the history of the practice of roughness parameterisation, using parameters like Manning's n, in hydrological and hydraulic models for flood inundation mapping. This history sustains the third section that is a more general consideration of one type of socio-hydrological practice: predictive modelling. I show that as part of a socio-hydrological analysis, hydrological prediction needs to be thought through much more carefully: not only because hydrological prediction exists to help inform decisions that are made about water management; but also because those predictions contain assumptions, the predictions are only correct in so far as those assumptions hold, and for those assumptions to hold, the socio-hydrological system (i.e. the world) has to be shaped so as to include them. Here, I add to the ``normal'' view that ideally our models should represent the world around us, to argue that for our models (and hence our predictions) to be valid, we have to make the world look like our models. Decisions over how the world is modelled may transform the world as much as they represent the world. Thus, socio-hydrological modelling has to become a socially accountable process such that the world is transformed, through the implications of modelling, in a fair and just manner. This leads into the final section of the paper where I consider how socio-hydrological research may be made more socially accountable, in a way that is both sensitive to the constructivist critique (Sect. 1), but which retains the contribution that hydrologists might make to socio-hydrological studies. This includes (1) working with conflict and controversy in hydrological science, rather than trying to eliminate them; (2) using hydrological events to avoid becoming locked into our own frames of explanation and prediction; (3) being empirical and experimental but in a socio-hydrological sense; and (4) co-producing socio-hydrological predictions. I will show how this might be done through a project that specifically developed predictive models for making interventions in river catchments to increase high river flow attenuation. Therein, I found myself becoming detached from my normal disciplinary networks and attached to the co-production of a predictive hydrological model with communities normally excluded from the practice of hydrological science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geophysical data may provide crucial information about hydrological properties, states, and processes that are difficult to obtain by other means. Large data sets can be acquired over widely different scales in a minimally invasive manner and at comparatively low costs, but their effective use in hydrology makes it necessary to understand the fidelity of geophysical models, the assumptions made in their construction, and the links between geophysical and hydrological properties. Geophysics has been applied for groundwater prospecting for almost a century, but it is only in the last 20 years that it is regularly used together with classical hydrological data to build predictive hydrological models. A largely unexplored venue for future work is to use geophysical data to falsify or rank competing conceptual hydrological models. A promising cornerstone for such a model selection strategy is the Bayes factor, but it can only be calculated reliably when considering the main sources of uncertainty throughout the hydrogeophysical parameter estimation process. Most classical geophysical imaging tools tend to favor models with smoothly varying property fields that are at odds with most conceptual hydrological models of interest. It is thus necessary to account for this bias or use alternative approaches in which proposed conceptual models are honored at all steps in the model building process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

River restoration can enhance river dynamics, environmental heterogeneity and biodiversity, but the underlying processes governing the dynamic changes need to be understood to ensure that restoration projects meet their goals, and adverse effects are prevented. In particular, we need to comprehend how hydromorphological variability quantitatively relates to ecosystem functioning and services, biodiversity as well as ground-and surface water quality in restored river corridors. This involves (i) physical processes and structural properties, determining erosion and sedimentation, as well as solute and heat transport behavior in surface water and within the subsurface; (ii) biogeochemical processes and characteristics, including the turnover of nutrients and natural water constituents; and (iii) ecological processes and indicators related to biodiversity and ecological functioning. All these aspects are interlinked, requiring an interdisciplinary investigation approach. Here, we present an overview of the recently completed RECORD (REstored CORridor Dynamics) project in which we combined physical, chemical, and biological observations with modeling at a restored river corridor of the perialpine Thur River in Switzerland. Our results show that river restoration, beyond inducing morphologic changes that reshape the river bed and banks, triggered complex spatial patterns of bank infiltration, and affected habitat type, biotic communities and biogeochemical processes. We adopted an interdisciplinary approach of monitoring the continuing changes due to restoration measures to address the following questions: How stable is the morphological variability established by restoration? Does morphological variability guarantee an improvement in biodiversity? How does morphological variability affect biogeochemical transformations in the river corridor? What are some potential adverse effects of river restoration? How is river restoration influenced by catchment-scale hydraulics [GRAPHICS] and which feedbacks exist on the large scale? Beyond summarizing the major results of individual studies within the project, we show that these overarching questions could only be addressed in an interdisciplinary framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snow cover is an important control in mountain environments and a shift of the snow-free period triggered by climate warming can strongly impact ecosystem dynamics. Changing snow patterns can have severe effects on alpine plant distribution and diversity. It thus becomes urgent to provide spatially explicit assessments of snow cover changes that can be incorporated into correlative or empirical species distribution models (SDMs). Here, we provide for the first time a with a lower overestimation comparison of two physically based snow distribution models (PREVAH and SnowModel) to produce snow cover maps (SCMs) at a fine spatial resolution in a mountain landscape in Austria. SCMs have been evaluated with SPOT-HRVIR images and predictions of snow water equivalent from the two models with ground measurements. Finally, SCMs of the two models have been compared under a climate warming scenario for the end of the century. The predictive performances of PREVAH and SnowModel were similar when validated with the SPOT images. However, the tendency to overestimate snow cover was slightly lower with SnowModel during the accumulation period, whereas it was lower with PREVAH during the melting period. The rate of true positives during the melting period was two times higher on average with SnowModel with a lower overestimation of snow water equivalent. Our results allow for recommending the use of SnowModel in SDMs because it better captures persisting snow patches at the end of the snow season, which is important when modelling the response of species to long-lasting snow cover and evaluating whether they might survive under climate change.