61 resultados para Hybrid regime
Resumo:
INTRODUCTION: The analysis of glucosinolates (GS) is traditionally performed by reverse-phase liquid chromatography coupled to ultraviolet detection after a time-consuming desulphation step, which is required for increased retention. Simpler and more efficient alternative methods that can shorten both sample preparation and analysis are much needed. OBJECTIVE: To evaluate the feasibility of using ultrahigh-pressure liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS) for the rapid profiling of intact GS. METHODOLOGY: A simple and short extraction of GS from Arabidopsis thaliana leaves was developed. Four sub-2 µm reverse-phase columns were tested for the rapid separation of these polar compounds using formic acid as the chromatographic additive. High-resolution QTOFMS was used to detect and identify GS. RESULTS: A novel charged surface hybrid (CSH) column was found to provide excellent retention and separation of GS within a total running time of 11 min. Twenty-one GS could be identified based on their accurate mass as well as isotopic and fragmentation patterns. The method was applied to determine the changes in GS content that occur after herbivory in Arabidopsis. In addition, we evaluated its applicability to the profiling of other Brassicaceae species. CONCLUSION: The method developed can profile the full range of GS, including the most polar ones, in a shorter time than previous methods, and is highly compatible with mass spectrometric detection.
Resumo:
Background One key question in evolutionary biology deals with the mode and rate at which reproductive isolation accumulates during allopatric speciation. Little is known about secondary contacts of recently diverged anuran species. Here we conduct a multi-locus field study to investigate a contact zone between two lineages of green toads with an estimated divergence time of 2.7 My, and report results from preliminary experimental crosses. Results The Sicilian endemic Bufo siculus and the Italian mainland-origin B. balearicus form a narrow hybrid zone east of Mt. Etna. Despite bidirectional mtDNA introgression over a ca. 40 km North-South cline, no F1 hybrids could be found, and nuclear genomes display almost no admixture. Populations from each side of the contact zone showed depressed genetic diversity and very strong differentiation (FST = 0.52). Preliminary experimental crosses point to a slightly reduced fitness in F1 hybrids, a strong hybrid breakdown in backcrossed offspring (F1 x parental, with very few reaching metamorphosis) and a complete and early mortality in F2 (F1 x F1). Conclusion Genetic patterns at the contact zone are molded by drift and selection. Local effective sizes are reduced by the geography and history of the contact zone, B. balearicus populations being at the front wave of a recent expansion (late Pleistocene). Selection against hybrids likely results from intrinsic genomic causes (disruption of coadapted sets of genes in backcrosses and F2-hybrids), possibly reinforced by local adaptation (the ranges of the two taxa roughly coincide with the borders of semiarid and arid climates). The absence of F1 in the field might be due to premating isolation mechanisms. Our results, show that these lineages have evolved almost complete reproductive isolation after some 2.7 My of divergence, contrasting sharply with evidence from laboratory experiments that some anuran species may still produce viable F1 offspring after > 20 My of divergence.
Resumo:
The use of molecular data to reconstruct the history of divergence and gene flow between populations of closely related taxa represents a challenging problem. It has been proposed that the long-standing debate about the geography of speciation can be resolved by comparing the likelihoods of a model of isolation with migration and a model of secondary contact. However, data are commonly only fit to a model of isolation with migration and rarely tested against the secondary contact alternative. Furthermore, most demographic inference methods have neglected variation in introgression rates and assume that the gene flow parameter (Nm) is similar among loci. Here, we show that neglecting this source of variation can give misleading results. We analysed DNA sequences sampled from populations of the marine mussels, Mytilus edulis and M. galloprovincialis, across a well-studied mosaic hybrid zone in Europe and evaluated various scenarios of speciation, with or without variation in introgression rates, using an Approximate Bayesian Computation (ABC) approach. Models with heterogeneous gene flow across loci always outperformed models assuming equal migration rates irrespective of the history of gene flow being considered. By incorporating this heterogeneity, the best-supported scenario was a long period of allopatric isolation during the first three-quarters of the time since divergence followed by secondary contact and introgression during the last quarter. By contrast, constraining migration to be homogeneous failed to discriminate among any of the different models of gene flow tested. Our simulations thus provide statistical support for the secondary contact scenario in the European Mytilus hybrid zone that the standard coalescent approach failed to confirm. Our results demonstrate that genomic variation in introgression rates can have profound impacts on the biological conclusions drawn from inference methods and needs to be incorporated in future studies.
Resumo:
Microsatellites are used to unravel the fine-scale genetic structure of a hybrid zone between chromosome races Valais and Cordon of the common shrew (Sorex araneus) located in the French Alps. A total of 269 individuals collected between 1992 and 1995 was typed for seven microsatellite loci. A modified version of the classical multiple correspondence analysis is carried out. This analysis clearly shows the dichotomy between the two races. Several approaches are used to study genetic structuring. Gene flow is clearly reduced between these chromosome races and is estimated at one migrant every two generations using X-statistics and one migrant per generation using F-statistics. Hierarchical F- and R-statistics are compared and their efficiency to detect inter- and intraracial patterns of divergence is discussed. Within-race genetic structuring is significant, but remains weak. F-ST displays similar values on both sides of the hybrid zone, although no environmental barriers are found on the Cordon side, whereas the Valais side is divided by several mountain rivers. We introduce the exact G-test to microsatellite data which proved to be a powerful test to detect genetic differentiation within as well as among races. The genetic background of karyotypic hybrids was compared with the genetic background of pure parental forms using a CRT-MCA. Our results indicate that, without knowledge of the karyotypes, we would not have been able to distinguish these hybrids from karyotypically pure samples.
Resumo:
Hybrid speciation was once thought to be rare in animals, but over the past decade, improved molecular analysis techniques and increased research attention have allowed scientists to uncover many examples. In this issue, two papers (Elgvin et al. 2011; Hermansen et al. 2011) present compelling evidence for the hybrid origin of the Italian sparrow based on nuclear and mitochondrial DNA sequences, microsatellites, and plumage coloration. These studies point to an important role for geographic isolation in the process of hybrid speciation, and provide a starting point for closer examination of the genetic and behavioural mechanisms involved.
Resumo:
Individuals sampled in hybrid zones are usually analysed according to their sampling locality, morphology, behaviour or karyotype. But the increasing availability of genetic information more and more favours its use for individual sorting purposes and numerous assignment methods based on the genetic composition of individuals have been developed. The shrews of the Sorex araneus group offer good opportunities to test the genetic assignment on individuals identified by their karyotype. Here we explored the potential and efficiency of a Bayesian assignment method combined or not with a reference dataset to study admixture and individual assignment in the difficult context of two hybrid zones between karyotypic species of the Sorex araneus group. As a whole, we assigned more than 80% of the individuals to their respective karyotypic categories (i.e. 'pure' species or hybrids). This assignment level is comparable to what was obtained for the same species away from hybrid zones. Additionally, we showed that the assignment result for several individuals was strongly affected by the inclusion or not of a reference dataset. This highlights the importance of such comparisons when analysing hybrid zones. Finally, differences between the admixture levels detected in both hybrid zones support the hypothesis of an impact of chromosomal rearrangements on gene flow.
Resumo:
Chromosomal rearrangements are proposed to promote genetic differentiation between chromosomally differentiated taxa and therefore promote speciation. Due to their remarkable karyotypic polymorphism, the shrews of the Sorex araneus group were used to investigate the impact of chromosomal rearrangements on gene flow. Five intraspecific chromosomal hybrid zones characterized by different levels of karyotypic complexity were studied using 16 microsatellites markers. We observed low levels of genetic differentiation even in the hybrid zones with the highest karyotypic complexity. No evidence of restricted gene flow between differently rearranged chromosomes was observed. Contrary to what was observed at the interspecific level, the effect of chromosomal rearrangements on gene flow was undetectable within the S. araneus species.
Resumo:
Purpose: We evaluated the potential for hybrid PET/MRI devices to provide integrated metabolic, functional and anatomic characterisation of patients with suspected coronary artery disease.Methods and Materials: Ten patients (5 with suspected hibernating myocardium and 5 healthy volunteers) performed an imaging study using a hybrid PET/MRI (Philips). Viability assessed by 18F-FDG was performed in diseased patients along with MRI anatomic and functional study and reassessed within 30 minutes by conventional PET/CT. Non-contrast right coronary artery (RCA) targeted and whole heart 3D coronary angio-MRI using ECG-gating and respiratory navigator was performed in healthy volunteers with reconstruction performed using MPR and volume rendering. The extent of metabolic defect (MD) using PET/MRI and PET/CT was compared in patients and coronary territories (LAD, CX, RCA). Assessability of coronary lumen was judged as good, sub-optimal or non-assessable using a 16-segments coronary model.Results: Metabolic assessment was successful in all patients with MD being 19.2% vs 18.3% using PET/MRI and PET/CT, respectively (P=ns). The MD was 10.2%, 6 %, and 3 % vs 9.3%, 6 % and 3 % for LAD, CX and RCA territories, respectively (P= ns). Coronary angio-MRI was successful in all volunteers with 66 coronary segments visualised overall. The RCA was fully visualised in 4/5 volunteers and the left coronary arteries in 4/5 volunteers. Assessability in visualised segments was good, sub-optimal and non-assessable in 88 %, 2 % and 10 %, respectively.Conclusion: Hybrid PET/MRI devices may enable metabolic evaluation comparable to PET/CT with additional value owing to accurate functional and anatomical information including coronary assessment.
Resumo:
Confronting a recently mated female with a strange male can induce a pregnancy block ('Bruce effect'). The physiology of this effect is well studied, but its functional significance is still not fully understood. The 'anticipated infanticide hypothesis' suggests that the pregnancy block serves to avoid the cost of embryogenesis and giving birth to offspring that are likely to be killed by a new territory holder. Some 'compatible-genes sexual selection hypotheses' suggest that the likelihood of a pregnancy block is also dependent on the female's perception of the stud's and the stimulus male's genetic quality. We used two inbred strains of mice (C57BL/6 and BALB/c) to test all possible combinations of female strain, stud strain, and stimulus strain under experimental conditions (N(total) = 241 mated females). As predicted from previous studies, we found increased rates of pregnancy blocks if stud and stimulus strains differed, and we found evidence for hybrid vigour in offspring of between-strain mating. Despite the observed heterosis, pregnancies of within-strain matings were not more likely to be blocked than pregnancies of between-strain matings. A power analysis revealed that if we missed an existing effect (type-II error), the effect must be very small. If a female gave birth, the number and weight of newborns were not significantly influenced by the stimulus males. In conclusion, we found no support for the 'compatible-genes sexual selection hypotheses'.
Resumo:
In hybrid zones, endogenous counter-selection of hybrids is usually first expressed as reduced fertility or viability in hybrids of the heterogametic sex, a mechanism known as Haldane's rule. This phenomenon often leads to a differential of gene flow between sex-linked markers. Here, we address the possibility of a differential gene flow for Y chromosome, mtDNA and autosomal markers across the hybrid zone between the genetically and chromosomally well-differentiated species Sorex antinorii and Sorex araneus race Vaud. Intermarker comparison clearly revealed coincidental centre and very abrupt clines for all three types of markers. The overall level of genetic differentiation between the two species must be strong enough to hinder asymmetric introgression. Cyto-nuclear mismatches were also observed in the centre of hybrid zone. The significantly lower number of mismatches observed in males than in females possibly results from Y chromosome-mtDNA interactions. Results are compared with those previously reported in another hybrid zone between S. antinori and S. araneus race Cordon.
Resumo:
Genome-wide scans of genetic differentiation between hybridizing taxa can identify genome regions with unusual rates of introgression. Regions of high differentiation might represent barriers to gene flow, while regions of low differentiation might indicate adaptive introgression-the spread of selectively beneficial alleles between reproductively isolated genetic backgrounds. Here we conduct a scan for unusual patterns of differentiation in a mosaic hybrid zone between two mussel species, Mytilus edulis and M. galloprovincialis. One outlying locus, mac-1, showed a characteristic footprint of local introgression, with abnormally high frequency of edulis-derived alleles in a patch of M. galloprovincialis enclosed within the mosaic zone, but low frequencies outside of the zone. Further analysis of DNA sequences showed that almost all of the edulis allelic diversity had introgressed into the M. galloprovincialis background in this patch. We then used a variety of approaches to test the hypothesis that there had been adaptive introgression at mac-1. Simulations and model fitting with maximum-likelihood and approximate Bayesian computation approaches suggested that adaptive introgression could generate a "soft sweep," which was qualitatively consistent with our data. Although the migration rate required was high, it was compatible with the functioning of an effective barrier to gene flow as revealed by demographic inferences. As such, adaptive introgression could explain both the reduced intraspecific differentiation around mac-1 and the high diversity of introgressed alleles, although a localized change in barrier strength may also be invoked. Together, our results emphasize the need to account for the complex history of secondary contacts in interpreting outlier loci.
Resumo:
By the end of the 1970s, contaminated sites had emerged as one of the most complex and urgent environmental issues affecting industrialized countries. The authors show that small and prosperous Switzerland is no exception to the pervasive problem of sites contamination, the legacy of past practices in waste management having left some 38,000 contaminated sites throughout the country. This book outlines the problem, offering evidence that open and polycentric environmental decision-making that includes civil society actors is valuable. They propose an understanding of environmental management of contaminated sites as a political process in which institutions frame interactions between strategic actors pursuing sometimes conflicting interests. In the opening chapter, the authors describe the influences of politics and the power relationships between actors involved in decision-making in contaminated sites management, which they term a "wicked problem." Chapter Two offers a theoretical framework for understanding institutions and the environmental management of contaminated sites. The next five chapters present a detailed case study on environmental management and contaminated sites in Switzerland, focused on the Bonfol Chemical Landfill. The study and analysis covers the establishment of the landfill under the first generation of environmental regulations, its closure and early remediation efforts, and the gambling on the remediation objectives, methods and funding in the first decade of the 21st Century. The concluding chapter discusses the question of whether the strength of environmental regulations, and the type of interactions between public, private, and civil society actors can explain the environmental choices in contaminated sites management. Drawing lessons from research, the authors debate the value of institutional flexibility for dealing with environmental issues such as contaminated sites.