46 resultados para Human Visual System


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of variance is commonly used in morphometry in order to ascertain differences in parameters between several populations. Failure to detect significant differences between populations (type II error) may be due to suboptimal sampling and lead to erroneous conclusions; the concept of statistical power allows one to avoid such failures by means of an adequate sampling. Several examples are given in the morphometry of the nervous system, showing the use of the power of a hierarchical analysis of variance test for the choice of appropriate sample and subsample sizes. In the first case chosen, neuronal densities in the human visual cortex, we find the number of observations to be of little effect. For dendritic spine densities in the visual cortex of mice and humans, the effect is somewhat larger. A substantial effect is shown in our last example, dendritic segmental lengths in monkey lateral geniculate nucleus. It is in the nature of the hierarchical model that sample size is always more important than subsample size. The relative weight to be attributed to subsample size thus depends on the relative magnitude of the between observations variance compared to the between individuals variance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The human auditory system is comprised of specialized but interacting anatomic and functional pathways encoding object, spatial, and temporal information. We review how learning-induced plasticity manifests along these pathways and to what extent there are common mechanisms subserving such plasticity. A first series of experiments establishes a temporal hierarchy along which sounds of objects are discriminated along basic to fine-grained categorical boundaries and learned representations. A widespread network of temporal and (pre)frontal brain regions contributes to object discrimination via recursive processing. Learning-induced plasticity typically manifested as repetition suppression within a common set of brain regions. A second series considered how the temporal sequence of sound sources is represented. We show that lateralized responsiveness during the initial encoding phase of pairs of auditory spatial stimuli is critical for their accurate ordered perception. Finally, we consider how spatial representations are formed and modified through training-induced learning. A population-based model of spatial processing is supported wherein temporal and parietal structures interact in the encoding of relative and absolute spatial information over the initial ∼300ms post-stimulus onset. Collectively, these data provide insights into the functional organization of human audition and open directions for new developments in targeted diagnostic and neurorehabilitation strategies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

RESUME Les améliorations méthodologiques des dernières décennies ont permis une meilleure compréhension de la motilité gastro-intestinale. Il manque toutefois une méthode qui permette de suivre la progression du chyme le long du tube gastro-intestinal. Pour permettre l'étude de la motilité de tout le tractus digestif humain, une nouvelle technique, peu invasive, a été élaborée au Département de Physiologie, en collaboration avec l'EPFL. Appelée "Magnet Tracking", la technique est basée sur la détection du champ magnétique généré par des matériaux ferromagnétiques avalés. A cet usage, une pilule magnétique, une matrice de capteurs et un logiciel ont été développés. L'objet de ce travail est de démontrer la faisabilité d'un examen de la motilité gastro-intestinale chez l'Homme par cette méthode. L'aimant est un cylindre (ø 6x7 mm, 0.2 cm3) protégé par une gaine de silicone. Le système de mesure est constitué d'une matrice de 4x4 capteurs et d'un ordinateur portable. Les capteurs fonctionnent sur l'effet Hall. Grâce à l'interface informatique, l'évolution de la position de l'aimant est suivie en temps réel à travers tout le tractus digestif. Sa position est exprimée en fonction du temps ou reproduite en 3-D sous forme d'une trajectoire. Différents programmes ont été crées pour analyser la dynamique des mouvements de l'aimant et caractériser la motilité digestive. Dix jeunes volontaires en bonne santé ont participé à l'étude. L'aimant a été avalé après une nuit de jeûne et son séjour intra digestif suivi pendant 2 jours consécutifs. Le temps moyen de mesure était de 34 heures. Chaque sujet a été examiné une fois sauf un qui a répété sept fois l'expérience. Les sujets restaient en décubitus dorsal, tranquilles et pouvaient interrompre la mesure s'ils le désiraient. Ils sont restés à jeûne le premier jour. L'évacuation de l'aimant a été contrôlée chez tous les sujets. Tous les sujets ont bien supporté l'examen. Le marqueur a pu être détecté de l'oesophage au rectum. La trajectoire ainsi constituée représente une conformation de l'anatomie digestive : une bonne superposition de celle-ci à l'anatomie est obtenue à partir des images de radiologie conventionnelle (CT-scan, lavement à la gastrografine). Les mouvements de l'aimant ont été caractérisés selon leur périodicité, leur amplitude ou leur vitesse pour chaque segment du tractus digestif. Ces informations physiologiques sont bien corrélées à celles obtenues par des méthodes établies d'étude de la motilité gastro-intestinale. Ce travail démontre la faisabilité d'un examen de la motilité gastro-intestinal chez l'Homme par la méthode de Magnet Tracking. La technique fournit les données anatomiques et permet d'analyser en temps réel la dynamique des mouvements du tube digestif. Cette méthode peu invasive ouvre d'intéressantes perspectives pour l'étude de motilité dans des conditions physiologiques et pathologiques. Des expériences visant à valider cette approche en tant que méthode clinique sont en voie de réalisation dans plusieurs centres en Suisse et à l'étranger. SUMMARY Methodological improvements realised over the last decades have permitted a better understanding of gastrointestinal motility. Nevertheless, a method allowing a continuous following of lumina' contents is still lacking. In order to study the human digestive tract motility, a new minimally invasive technique was developed at the Department of Physiology in collaboration with Swiss Federal Institute of Technology. The method is based on the detection of magnetic field generated by swallowed ferromagnetic materials. The aim of our work was to demonstrate the feasibility of this new approach to study the human gastrointestinal motility. The magnet used was a cylinder (ø6x7mm, 0.2 cm3) coated with silicon. The magnet tracking system consisted of a 4x4 matrix of sensors based on the Hall effect Signals from the sensors were digitised and sent to a laptop computer for processing and storage. Specific software was conceived to analyse in real time the progression of the magnet through the gastrointestinal tube. Ten young and healthy volunteers were enrolled in the study. After a fasting period of 12 hours, they swallowed the magnet. The pill was then tracked for two consecutive days for 34 hours on average. Each subject was studied once except one who was studied seven times. Every subject laid on his back for the entire experiment but could interrupt it at anytime. Evacuation of the magnet was controlled in all subjects. The examination was well tolerated. The pill could be followed from the esophagus to the rectum. The trajectory of the magnet represented a "mould" of the anatomy of the digestive tube: a good superimposition with radiological anatomy (gastrografin contrast and CT) was obtained. Movements of the magnet were characterized by periodicity, velocity, and amplitude of displacements for every segment of the digestive tract. The physiological information corresponded well to data from current methods of studying gastrointestinal motility. This work demonstrates the feasibility of the new approach in studies of human gastrointestinal motility. The technique allows to correlate in real time the dynamics of digestive movements with the anatomical data. This minimally invasive method is ready for studies of human gastrointestinal motility under physiological as well as pathological conditions. Studies aiming at validation of this new approach as a clinically relevant tool are being realised in several centres in Switzerland and abroad. Abstract: A new minimally invasive technique allowing for anatomical mapping and motility studies along the entire human digestive system is presented. The technique is based on continuous tracking of a small magnet progressing through the digestive tract. The coordinates of the magnet are calculated from signals recorded by 16 magnetic field sensors located over the abdomen. The magnet position, orientation and trajectory are displayed in real time. Ten young healthy volunteers were followed during 34 h. The technique was well tolerated and no complication was encountered, The information obtained was 3-D con-figuration of the digestive tract and dynamics of the magnet displacement (velocity, transit time, length estimation, rhythms). In the same individual, repea-ted examination gave very reproducible results. The anatomical and physiological information obtained corresponded well to data from current methods and imaging. This simple, minimally invasive technique permits examination of the entire digestive tract and is suitable for both research and clinical studies. In combination with other methods, it may represent a useful tool for studies of Cl motility with respect to normal and pathological conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ABSTRACT (FRENCH)Ce travail de thèse basé sur le système visuel chez les sujets sains et chez les patients schizophrènes, s'articule autour de trois articles scientifiques publiés ou en cours de publication. Ces articles traitent des sujets suivants : le premier article présente une nouvelle méthode de traitement des composantes physiques des stimuli (luminance et fréquence spatiale). Le second article montre, à l'aide d'analyses de données EEG, un déficit de la voie magnocellulaire dans le traitement visuel des illusions chez les patients schizophrènes. Ceci est démontré par l'absence de modulation de la composante PI chez les patients schizophrènes contrairement aux sujets sains. Cette absence est induite par des stimuli de type illusion Kanizsa de différentes excentricités. Finalement, le troisième article, également à l'aide de méthodes de neuroimagerie électrique (EEG), montre que le traitement des contours illusoires se trouve dans le complexe latéro-occipital (LOC), à l'aide d'illusion « misaligned gratings ». De plus il révèle que les activités démontrées précédemment dans les aires visuelles primaires sont dues à des inférences « top- down ».Afin de permettre la compréhension de ces trois articles, l'introduction de ce manuscrit présente les concepts essentiels. De plus des méthodes d'analyses de temps-fréquence sont présentées. L'introduction est divisée en quatre parties : la première présente le système visuel depuis les cellules retino-corticales aux deux voix du traitement de l'information en passant par les régions composant le système visuel. La deuxième partie présente la schizophrénie par son diagnostic, ces déficits de bas niveau de traitement des stimuli visuel et ces déficits cognitifs. La troisième partie présente le traitement des contours illusoires et les trois modèles utilisés dans le dernier article. Finalement, les méthodes de traitement des données EEG seront explicitées, y compris les méthodes de temps-fréquences.Les résultats des trois articles sont présentés dans le chapitre éponyme (du même nom). De plus ce chapitre comprendra les résultats obtenus à l'aide des méthodes de temps-fréquenceFinalement, la discussion sera orientée selon trois axes : les méthodes de temps-fréquence ainsi qu'une proposition de traitement de ces données par une méthode statistique indépendante de la référence. La discussion du premier article en montrera la qualité du traitement de ces stimuli. La discussion des deux articles neurophysiologiques, proposera de nouvelles d'expériences afin d'affiner les résultats actuels sur les déficits des schizophrènes. Ceci pourrait permettre d'établir un marqueur biologique fiable de la schizophrénie.ABSTRACT (ENGLISH)This thesis focuses on the visual system in healthy subjects and schizophrenic patients. To address this research, advanced methods of analysis of electroencephalographic (EEG) data were used and developed. This manuscript is comprised of three scientific articles. The first article showed a novel method to control the physical features of visual stimuli (luminance and spatial frequencies). The second article showed, using electrical neuroimaging of EEG, a deficit in spatial processing associated with the dorsal pathway in chronic schizophrenic patients. This deficit was elicited by an absent modulation of the PI component in terms of response strength and topography as well as source estimations. This deficit was orthogonal to the preserved ability to process Kanizsa-type illusory contours. Finally, the third article resolved ongoing debates concerning the neural mechanism mediating illusory contour sensitivity by using electrical neuroimaging to show that the first differentiation of illusory contour presence vs. absence is localized within the lateral occipital complex. This effect was subsequent to modulations due to the orientation of misaligned grating stimuli. Collectively, these results support a model where effects in V1/V2 are mediated by "top-down" modulation from the LOC.To understand these three articles, the Introduction of this thesis presents the major concepts used in these articles. Additionally, a section is devoted to time-frequency analysis methods not presented in the articles themselves. The introduction is divided in four parts. The first part presents three aspects of the visual system: cellular, regional, and its functional interactions. The second part presents an overview of schizophrenia and its sensoiy-cognitive deficits. The third part presents an overview of illusory contour processing and the three models examined in the third article. Finally, advanced analysis methods for EEG are presented, including time- frequency methodology.The Introduction is followed by a synopsis of the main results in the articles as well as those obtained from the time-frequency analyses.Finally, the Discussion chapter is divided along three axes. The first axis discusses the time frequency analysis and proposes a novel statistical approach that is independent of the reference. The second axis contextualizes the first article and discusses the quality of the stimulus control and direction for further improvements. Finally, both neurophysiologic articles are contextualized by proposing future experiments and hypotheses that may serve to improve our understanding of schizophrenia on the one hand and visual functions more generally.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The visual cortex in each hemisphere is linked to the opposite hemisphere by axonal projections that pass through the splenium of the corpus callosum. Visual-callosal connections in humans and macaques are found along the V1/V2 border where the vertical meridian is represented. Here we identify the topography of V1 vertical midline projections through the splenium within six human subjects with normal vision using diffusion-weighted MR imaging and probabilistic diffusion tractography. Tractography seed points within the splenium were classified according to their estimated connectivity profiles to topographic subregions of V1, as defined by functional retinotopic mapping. First, we report a ventral-dorsal mapping within the splenium with fibers from ventral V1 (representing the upper visual field) projecting to the inferior-anterior corner of the splenium and fibers from dorsal V1 (representing the lower visual field) projecting to the superior-posterior end. Second, we also report an eccentricity gradient of projections from foveal-to-peripheral V1 subregions running in the anterior-superior to posterior-inferior direction, orthogonal to the dorsal-ventral mapping. These results confirm and add to a previous diffusion MRI study (Dougherty et al., 2005) which identified a dorsal/ventral mapping of human splenial fibers. These findings yield a more detailed view of the structural organization of the splenium than previously reported and offer new opportunities to study structural plasticity in the visual system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In experimental animals, oncofoetal antigens1 have been found to be associated with both chemical-2 and virus-induced tumours3. In man the two best known oncofoetal antigens are the α-foetoprotein (AFP) described by both Abelev4 and Tatarinov5 and the carcinoembryonic antigen (CEA) of the human digestive system identified by Gold and Freedman6. We describe here a different human oncofoetal antigen, common to several types of carcinomas and various foetal organs. This antigen has been identified by rabbit antisera raised against semipurified fractions of colon carcinoma soluble extracts. Because of its β-immunoelectrophoretic mobility, this antigen will be referred to as β-oncofoetal antigen (BOFA).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Approaching or looming sounds (L-sounds) have been shown to selectively increase visual cortex excitability [Romei, V., Murray, M. M., Cappe, C., & Thut, G. Preperceptual and stimulus-selective enhancement of low-level human visual cortex excitability by sounds. Current Biology, 19, 1799-1805, 2009]. These cross-modal effects start at an early, preperceptual stage of sound processing and persist with increasing sound duration. Here, we identified individual factors contributing to cross-modal effects on visual cortex excitability and studied the persistence of effects after sound offset. To this end, we probed the impact of different L-sound velocities on phosphene perception postsound as a function of individual auditory versus visual preference/dominance using single-pulse TMS over the occipital pole. We found that the boosting of phosphene perception by L-sounds continued for several tens of milliseconds after the end of the L-sound and was temporally sensitive to different L-sound profiles (velocities). In addition, we found that this depended on an individual's preferred sensory modality (auditory vs. visual) as determined through a divided attention task (attentional preference), but not on their simple threshold detection level per sensory modality. Whereas individuals with "visual preference" showed enhanced phosphene perception irrespective of L-sound velocity, those with "auditory preference" showed differential peaks in phosphene perception whose delays after sound-offset followed the different L-sound velocity profiles. These novel findings suggest that looming signals modulate visual cortex excitability beyond sound duration possibly to support prompt identification and reaction to potentially dangerous approaching objects. The observed interindividual differences favor the idea that unlike early effects this late L-sound impact on visual cortex excitability is influenced by cross-modal attentional mechanisms rather than low-level sensory processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Time is embedded in any sensory experience: the movements of a dance, the rhythm of a piece of music, the words of a speaker are all examples of temporally structured sensory events. In humans, if and how visual cortices perform temporal processing remains unclear. Here we show that both primary visual cortex (V1) and extrastriate area V5/MT are causally involved in encoding and keeping time in memory and that this involvement is independent from low-level visual processing. Most importantly we demonstrate that V1 and V5/MT come into play simultaneously and seem to be functionally linked during interval encoding, whereas they operate serially (V1 followed by V5/MT) and seem to be independent while maintaining temporal information in working memory. These data help to refine our knowledge of the functional properties of human visual cortex, highlighting the contribution and the temporal dynamics of V1 and V5/MT in the processing of the temporal aspects of visual information.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent evidence suggests the human auditory system is organized,like the visual system, into a ventral 'what' pathway, devoted toidentifying objects and a dorsal 'where' pathway devoted to thelocalization of objects in space w1x. Several brain regions have beenidentified in these two different pathways, but until now little isknown about the temporal dynamics of these regions. We investigatedthis issue using 128-channel auditory evoked potentials(AEPs).Stimuli were stationary sounds created by varying interaural timedifferences and environmental real recorded sounds. Stimuli ofeach condition (localization, recognition) were presented throughearphones in a blocked design, while subjects determined theirposition or meaning, respectively.AEPs were analyzed in terms of their topographical scalp potentialdistributions (segmentation maps) and underlying neuronalgenerators (source estimation) w2x.Fourteen scalp potential distributions (maps) best explained theentire data set.Ten maps were nonspecific (associated with auditory stimulationin general), two were specific for sound localization and two werespecific for sound recognition (P-values ranging from 0.02 to0.045).Condition-specific maps appeared at two distinct time periods:;200 ms and ;375-550 ms post-stimulus.The brain sources associated with the maps specific for soundlocalization were mainly situated in the inferior frontal cortices,confirming previous findings w3x. The sources associated withsound recognition were predominantly located in the temporal cortices,with a weaker activation in the frontal cortex.The data show that sound localization and sound recognitionengage different brain networks that are apparent at two distincttime periods.References1. Maeder et al. Neuroimage 2001.2. Michel et al. Brain Research Review 2001.3. Ducommun et al. Neuroimage 2002.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Disease-causing variants of a large number of genes trigger inherited retinal degeneration leading to photoreceptor loss. Because cones are essential for daylight and central vision such as reading, mobility, and face recognition, this review focuses on a variety of animal models for cone diseases. The pertinence of using these models to reveal genotype/phenotype correlations and to evaluate new therapeutic strategies is discussed. Interestingly, several large animal models recapitulate human diseases and can serve as a strong base from which to study the biology of disease and to assess the scale-up of new therapies. Examples of innovative approaches will be presented such as lentiviral-based transgenesis in pigs and adeno-associated virus (AAV)-gene transfer into the monkey eye to investigate the neural circuitry plasticity of the visual system. The models reported herein permit the exploration of common mechanisms that exist between different species and the identification and highlighting of pathways that may be specific to primates, including humans.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bacterial endotoxin (lipopolysaccharide, LPS) is the major component of the outer leaflet of the outer membrane in gram-negative bacteria. During severe infections, bacteria may reach the blood circuit of humans, and endotoxins may be released from the bacteria due to cell division or cell death. In particular enterobacterial forms of LPS represent extremely strong activator molecules of the human immune system causing a rapid induction of cytokine production in monocytes and macrophages. Various mammalian blood proteins have been documented to display LPS binding activities mediating normally decreasing effects in the biological activity of LPS. In more recent studies, the essential systemic oxygen transportation protein hemoglobin (Hb) has been shown to amplify LPS-induced cytokine production on immune cells. The mechanism responsible for this effect is poorly understood. Here, we characterize the interaction of hemoglobin with LPS by using biophysical methods. The data presented, revealing the changes of the type and size of supramolecular aggregates of LPS in the presence of Hb, allow a better understanding of the hemoglobin-induced increase in bioactivity of LPS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of new medical devices, such as aortic valves, requires numerous preliminary studies on animals and training of personnel on cadavers before the devices can be used in patients. Postmortem circulation, a technique used for postmortem angiography, allows the vascular system to be reperfused in a way similar to that in living persons. This technique is used for postmortem investigations to visualize the human vascular system and to make vascular diagnoses. Specific material for reperfusing a human body was developed recently. Our aim was to investigate whether postmortem circulation that imitates in vivo conditions allows for the testing of medical materials on cadavers. We did this by delivering an aortic valve using minimally invasive methods. Postmortem circulation was established in eight corpses to recreate an environment as close as possible to in vivo conditions. Mobile fluoroscopy and a percutaneous catheterization technique were used to deliver the material to the correct place. Once the valve was implanted, the heart and primary vessels were extracted to confirm its position. Postmortem circulation proved to be essential in several of the cadavers because it helped the clinicians to deliver the material and improve their implantation techniques. Due to the intravascular circulation, sites with substantial arteriosclerotic stenosis could be bypassed, which would have been impossible without perfusion. Although originally developed for postmortem investigations, this reperfusion technique could be useful for testing new medical devices intended for living patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Bioaerosols such as grain dust (GD) elicit direct immunological reactions within the human respiratory system. Workplace-dependent exposure to GD may induce asthma, chronic bronchitis, and hypersensitivity pneumonitis. Aims: To assess the clinical impact of occupational exposure to GD and to determine quantitative biological markers of bioaerosol exposure in grain workers. Methods: This longitudinal study has been conducted from summer 2012 to summer 2013, comprising 6 groups of 30 active workers with different GD exposure patterns (4 groups of grain workers, 2 control groups). Two evaluations at high- and low-exposing seasons take place, during which an occupational and a medical history are questionnaire-assessed, lung function is evaluated by spirometry, airway inflammation is measured by exhaled nitric oxide (eNO) and specific blood IgG and IgE are titrated. Results: The preliminary results are those of 2 of the 4 exposed groups, (harvesters and mill workers), compared to the control groups, at first assessment (n=100). Mean age is 38.4 [years]; 98% are male. Exposed groups differ from controls (p<0.05) in daily contact with animals (57% vs. 40%) and active smoking (39% vs. 11%). Grain workers have more respiratory (50%), nasal (57%), ocular (45%) and dermatologic (36%) occupational symptoms than controls (6.4%, 19%, 16%, 6.4% respectively, p<0.05). Lower mean peak-expiratory-flow (PEF) values (96.1 ± 18.9 vs. 108.2 ± 17.4 [% of predicted], p<0.05) and eNO values (13.9 ± 9.6 vs. 20.5 ± 14.7 [ppm], p<0.05) are observed in the exposed groups. Conclusion: Preliminary results show a higher prevalence of clinical symptoms and a lower mean PEF value in the groups exposed to GD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: The discovery of a new class of intrinsically photosensitive retinal ganglion cells (ipRGCs) revealed their superior role for various nonvisual biological functions, including the pupil light reflex, and circadian photoentrainment. RECENT FINDINGS: Recent works have identified and characterized several anatomically and functionally distinct ipRGC subtypes and have added strong new evidence for the accessory role of ipRGCs in the visual system in humans. SUMMARY: This review summarizes current concepts related to ipRGC morphology, central connections and behavioural functions and highlights recent studies having clinical relevance to ipRGCs. Clinical implications of the melanopsin system are widespread, particularly as related to chronobiology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Bioaerosols such as grain dust, via biologically active agents, elicit local inflammation and direct immunological reactions within the human respiratory system. Workplace-dependent exposure to grain dust (GD) may thus induce asthma, chronic bronchitis, and hypersensitivity pneumonitis. The aim of this study is to assess the clinical impact of occupational exposure to GD and to determine quantitative biological markers of bioaerosol exposure in grain workers. Methods: This longitudinal study has been conducted from summer 2012, to summer 2013, comprising 6 groups of 30 active workers with different GD exposure patterns (4 groups of grain workers, 2 control groups). After obtaining informed consent, two evaluations at high- and low-exposing seasons take place, during which an occupational history and a detailed medical history are questionnaire-assessed, lung function is evaluated by spirometry, airway inflammation is measured by exhaled nitric oxide (eNO), and specific blood IgG and IgE are titrated. The preliminary results presented hereafter are those of two of the four exposed groups, namely harvesters and mill workers, compared to the control groups, at first assessment (n=100). Results: Mean age is 38.4 [years]; 98% are male. Exposed groups differ from controls (p<0.05) in daily contact with animals (57% vs. 40%) and active smoking (39% vs. 11%). Grain workers have more respiratory (50%), nasal (57%), ocular (45%), dermatologic (36%) and systemic (20%) occupational symptoms than controls (6.4%, 19%, 16%, 6.4%, 1.6% respectively, p<0.05). Lower mean peak-expiratory-flow (PEF) values (96.1 ± 18.9 vs. 108.2 ± 17.4 [% of predicted], p<0.05) and eNO values (13.9 ± 9.6 vs. 20.5 ± 14.7 [ppm], p<0.05) are observed in the exposed groups. Conclusion: Preliminary results show a higher prevalence of clinical symptoms and a lower mean PEF value in the exposed groups. Detailed supplementary analyses are pending.