57 resultados para Historically accurate reconstructions
Resumo:
AbstractFor a wide range of environmental, hydrological, and engineering applications there is a fast growing need for high-resolution imaging. In this context, waveform tomographic imaging of crosshole georadar data is a powerful method able to provide images of pertinent electrical properties in near-surface environments with unprecedented spatial resolution. In contrast, conventional ray-based tomographic methods, which consider only a very limited part of the recorded signal (first-arrival traveltimes and maximum first-cycle amplitudes), suffer from inherent limitations in resolution and may prove to be inadequate in complex environments. For a typical crosshole georadar survey the potential improvement in resolution when using waveform-based approaches instead of ray-based approaches is in the range of one order-of- magnitude. Moreover, the spatial resolution of waveform-based inversions is comparable to that of common logging methods. While in exploration seismology waveform tomographic imaging has become well established over the past two decades, it is comparably still underdeveloped in the georadar domain despite corresponding needs. Recently, different groups have presented finite-difference time-domain waveform inversion schemes for crosshole georadar data, which are adaptations and extensions of Tarantola's seminal nonlinear generalized least-squares approach developed for the seismic case. First applications of these new crosshole georadar waveform inversion schemes on synthetic and field data have shown promising results. However, there is little known about the limits and performance of such schemes in complex environments. To this end, the general motivation of my thesis is the evaluation of the robustness and limitations of waveform inversion algorithms for crosshole georadar data in order to apply such schemes to a wide range of real world problems.One crucial issue to making applicable and effective any waveform scheme to real-world crosshole georadar problems is the accurate estimation of the source wavelet, which is unknown in reality. Waveform inversion schemes for crosshole georadar data require forward simulations of the wavefield in order to iteratively solve the inverse problem. Therefore, accurate knowledge of the source wavelet is critically important for successful application of such schemes. Relatively small differences in the estimated source wavelet shape can lead to large differences in the resulting tomograms. In the first part of my thesis, I explore the viability and robustness of a relatively simple iterative deconvolution technique that incorporates the estimation of the source wavelet into the waveform inversion procedure rather than adding additional model parameters into the inversion problem. Extensive tests indicate that this source wavelet estimation technique is simple yet effective, and is able to provide remarkably accurate and robust estimates of the source wavelet in the presence of strong heterogeneity in both the dielectric permittivity and electrical conductivity as well as significant ambient noise in the recorded data. Furthermore, our tests also indicate that the approach is insensitive to the phase characteristics of the starting wavelet, which is not the case when directly incorporating the wavelet estimation into the inverse problem.Another critical issue with crosshole georadar waveform inversion schemes which clearly needs to be investigated is the consequence of the common assumption of frequency- independent electromagnetic constitutive parameters. This is crucial since in reality, these parameters are known to be frequency-dependent and complex and thus recorded georadar data may show significant dispersive behaviour. In particular, in the presence of water, there is a wide body of evidence showing that the dielectric permittivity can be significantly frequency dependent over the GPR frequency range, due to a variety of relaxation processes. The second part of my thesis is therefore dedicated to the evaluation of the reconstruction limits of a non-dispersive crosshole georadar waveform inversion scheme in the presence of varying degrees of dielectric dispersion. I show that the inversion algorithm, combined with the iterative deconvolution-based source wavelet estimation procedure that is partially able to account for the frequency-dependent effects through an "effective" wavelet, performs remarkably well in weakly to moderately dispersive environments and has the ability to provide adequate tomographic reconstructions.
Resumo:
The aim of this study was to compare the diagnostic efficiency of plain film and spiral CT examinations with 3D reconstructions of 42 tibial plateau fractures and to assess the accuracy of these two techniques in the pre-operative surgical plan in 22 cases. Forty-two tibial plateau fractures were examined with plain film (anteroposterior, lateral, two obliques) and spiral CT with surface-shaded-display 3D reconstructions. The Swiss AO-ASIF classification system of bone fracture from Muller was used. In 22 cases the surgical plans and the sequence of reconstruction of the fragments were prospectively determined with both techniques, successively, and then correlated with the surgical reports and post-operative plain film. The fractures were underestimated with plain film in 18 of 42 cases (43%). Due to the spiral CT 3D reconstructions, and precise pre-operative information, the surgical plans based on plain film were modified and adjusted in 13 cases among 22 (59%). Spiral CT 3D reconstructions give a better and more accurate demonstration of the tibial plateau fracture and allows a more precise pre-operative surgical plan.
Resumo:
BACKGROUND: Measurement of plasma renin is important for the clinical assessment of hypertensive patients. The most common methods for measuring plasma renin are the plasma renin activity (PRA) assay and the renin immunoassay. The clinical application of renin inhibitor therapy has thrown into focus the differences in information provided by activity assays and immunoassays for renin and prorenin measurement and has drawn attention to the need for precautions to ensure their accurate measurement. CONTENT: Renin activity assays and immunoassays provide related but different information. Whereas activity assays measure only active renin, immunoassays measure both active and inhibited renin. Particular care must be taken in the collection and processing of blood samples and in the performance of these assays to avoid errors in renin measurement. Both activity assays and immunoassays are susceptible to renin overestimation due to prorenin activation. In addition, activity assays performed with peptidase inhibitors may overestimate the degree of inhibition of PRA by renin inhibitor therapy. Moreover, immunoassays may overestimate the reactive increase in plasma renin concentration in response to renin inhibitor therapy, owing to the inhibitor promoting conversion of prorenin to an open conformation that is recognized by renin immunoassays. CONCLUSIONS: The successful application of renin assays to patient care requires that the clinician and the clinical chemist understand the information provided by these assays and of the precautions necessary to ensure their accuracy.
Resumo:
Our understanding of the distribution of worldwide human genomic diversity has greatly increased over recent years thanks to the availability of large data sets derived from short tandem repeats (STRs), insertion deletion polymorphisms (indels) and single nucleotide polymorphisms (SNPs). A concern, however, is that the current picture of worldwide human genomic diversity may be inaccurate because of biases in the selection process of genetic markers (so-called 'ascertainment bias'). To evaluate this problem, we first compared the distribution of genomic diversity between these three types of genetic markers in the populations from the HGDP-CEPH panel for evidence of bias or incongruities. In a second step, using a very relaxed set of criteria to prevent the intrusion of bias, we developed a new set of unbiased STR markers and compared the results against those from available panels. Contrarily to recent claims, our results show that the STR markers suffer from no discernible bias, and can thus be used as a baseline reference for human genetic diversity and population differentiation. The bias on SNPs is moderate compared to that on the set of indels analysed, which we recommend should be avoided for work describing the distribution of human genetic diversity or making inference on human settlement history.
Resumo:
A new method of measuring joint angle using a combination of accelerometers and gyroscopes is presented. The method proposes a minimal sensor configuration with one sensor module mounted on each segment. The model is based on estimating the acceleration of the joint center of rotation by placing a pair of virtual sensors on the adjacent segments at the center of rotation. In the proposed technique, joint angles are found without the need for integration, so absolute angles can be obtained which are free from any source of drift. The model considers anatomical aspects and is personalized for each subject prior to each measurement. The method was validated by measuring knee flexion-extension angles of eight subjects, walking at three different speeds, and comparing the results with a reference motion measurement system. The results are very close to those of the reference system presenting very small errors (rms = 1.3, mean = 0.2, SD = 1.1 deg) and excellent correlation coefficients (0.997). The algorithm is able to provide joint angles in real-time, and ready for use in gait analysis. Technically, the system is portable, easily mountable, and can be used for long term monitoring without hindrance to natural activities.
Resumo:
The purposes of this study were to characterize the performance of a 3-dimensional (3D) ordered-subset expectation maximization (OSEM) algorithm in the quantification of left ventricular (LV) function with (99m)Tc-labeled agent gated SPECT (G-SPECT), the QGS program, and a beating-heart phantom and to optimize the reconstruction parameters for clinical applications. METHODS: A G-SPECT image of a dynamic heart phantom simulating the beating left ventricle was acquired. The exact volumes of the phantom were known and were as follows: end-diastolic volume (EDV) of 112 mL, end-systolic volume (ESV) of 37 mL, and stroke volume (SV) of 75 mL; these volumes produced an LV ejection fraction (LVEF) of 67%. Tomographic reconstructions were obtained after 10-20 iterations (I) with 4, 8, and 16 subsets (S) at full width at half maximum (FWHM) gaussian postprocessing filter cutoff values of 8-15 mm. The QGS program was used for quantitative measurements. RESULTS: Measured values ranged from 72 to 92 mL for EDV, from 18 to 32 mL for ESV, and from 54 to 63 mL for SV, and the calculated LVEF ranged from 65% to 76%. Overall, the combination of 10 I, 8 S, and a cutoff filter value of 10 mm produced the most accurate results. The plot of the measures with respect to the expectation maximization-equivalent iterations (I x S product) revealed a bell-shaped curve for the LV volumes and a reverse distribution for the LVEF, with the best results in the intermediate range. In particular, FWHM cutoff values exceeding 10 mm affected the estimation of the LV volumes. CONCLUSION: The QGS program is able to correctly calculate the LVEF when used in association with an optimized 3D OSEM algorithm (8 S, 10 I, and FWHM of 10 mm) but underestimates the LV volumes. However, various combinations of technical parameters, including a limited range of I and S (80-160 expectation maximization-equivalent iterations) and low cutoff values (< or =10 mm) for the gaussian postprocessing filter, produced results with similar accuracies and without clinically relevant differences in the LV volumes and the estimated LVEF.
Resumo:
Using head-mounted eye tracker material, we assessed spatial recognition abilities (e.g., reaction to object permutation, removal or replacement with a new object) in participants with intellectual disabilities. The "Intellectual Disabilities (ID)" group (n=40) obtained a score totalling a 93.7% success rate, whereas the "Normal Control" group (n=40) scored 55.6% and took longer to fix their attention on the displaced object. The participants with an intellectual disability thus had a more accurate perception of spatial changes than controls. Interestingly, the ID participants were more reactive to object displacement than to removal of the object. In the specific test of novelty detection, however, the scores were similar, the two groups approaching 100% detection. Analysis of the strategies expressed by the ID group revealed that they engaged in more systematic object checking and were more sensitive than the control group to changes in the structure of the environment. Indeed, during the familiarisation phase, the "ID" group explored the collection of objects more slowly, and fixed their gaze for a longer time upon a significantly lower number of fixation points during visual sweeping.
Resumo:
Explicitly correlated coupled-cluster calculations of intermolecular interaction energies for the S22 benchmark set of Jurecka, Sponer, Cerny, and Hobza (Chem. Phys. Phys. Chem. 2006, 8, 1985) are presented. Results obtained with the recently proposed CCSD(T)-F12a method and augmented double-zeta basis sets are found to be in very close agreement with basis set extrapolated conventional CCSD(T) results. Furthermore, we propose a dispersion-weighted MP2 (DW-MP2) approximation that combines the good accuracy of MP2 for complexes with predominately electrostatic bonding and SCS-MP2 for dispersion-dominated ones. The MP2-F12 and SCS-MP2-F12 correlation energies are weighted by a switching function that depends on the relative HF and correlation contributions to the interaction energy. For the S22 set, this yields a mean absolute deviation of 0.2 kcal/mol from the CCSD(T)-F12a results. The method, which allows obtaining accurate results at low cost, is also tested for a number of dimers that are not in the training set.
Resumo:
The three most frequent forms of mild cognitive impairment (MCI) are single-domain amnestic MCI (sd-aMCI), single-domain dysexecutive MCI (sd-dMCI) and multiple-domain amnestic MCI (md-aMCI). Brain imaging differences among single domain subgroups of MCI were recently reported supporting the idea that electroencephalography (EEG) functional hallmarks can be used to differentiate these subgroups. We performed event-related potential (ERP) measures and independent component analysis in 18 sd-aMCI, 13 sd-dMCI and 35 md-aMCI cases during the successful performance of the Attentional Network Test. Sensitivity and specificity analyses of ERP for the discrimination of MCI subgroups were also made. In center-cue and spatial-cue warning stimuli, contingent negative variation (CNV) was elicited in all MCI subgroups. Two independent components (ICA1 and 2) were superimposed in the time range on the CNV. The ICA2 was strongly reduced in sd-dMCI compared to sd-aMCI and md-aMCI (4.3 vs. 7.5% and 10.9% of the CNV component). The parietal P300 ERP latency increased significantly in sd-dMCI compared to md-aMCI and sd-aMCI for both congruent and incongruent conditions. This latency for incongruent targets allowed for a highly accurate separation of sd-dMCI from both sd-aMCI and md-aMCI with correct classification rates of 90 and 81%, respectively. This EEG parameter alone performed much better than neuropsychological testing in distinguishing sd-dMCI from md-aMCI. Our data reveal qualitative changes in the composition of the neural generators of CNV in sd-dMCI. In addition, they document an increased latency of the executive P300 component that may represent a highly accurate hallmark for the discrimination of this MCI subgroup in routine clinical settings.
Resumo:
A full global geodynamical reconstruction model has been developed at the University of Lausanne over the past 20 years, and is used herein to re-appraise the evolution of the Australides from 600 to 200 Ma. Geological information of geodynamical interest associated with constraints on tectonic plate driving forces allow us to propose a consistent scenario for the evolution of Australia-Antarctica-proto-Pacific system. According to our model, most geodynamic units (GDUs) of the Australides are exotic in origin, and many tectonic events of the Delamerian Cycle, Lachlan SuperCycle, and New England SuperCycle are regarded as occurring off-shore Gondwana.