42 resultados para Histochemical staining2.Cadmium
Cadmium uptake and induction of metallothionein synthesis in a renal epithelial cell line (LLC-PK1).
Resumo:
LLC-PK1 cells, an established cell line from pig kidney with proximal tubule properties, were cultivated in vitro at confluence on plastic dishes. They were then exposed (apical side) to inorganic cadmium (CdCl2, 5 microM) for periods ranging between 1 to 24 h. Analysis of the cell supernatant after homogenisation and ultracentrifugation indicated that Cd taken up in the first 3 h was bound to cytosolic high molecular weight proteins, but was redistributed to low molecular weight proteins at later stages. Induction of Cd-metallothionein (Cd-Mt) synthesis, as judged from Cd-Mt binding to a specific anti-Cd-Mt antibody and from the rate of 35S-cys incorporation into a specific protein fraction, was apparent 3-6 h after the addition of Cd to the incubation medium.
Resumo:
Free-flow micropuncture was carried out in superficial nephrons of Munich-Wistar type rats infused acutely with Cd acetate (CdA) or Cd-DTPA (141 microM Cd). Fluid obtained from Bowman's space (BS) or end-proximal tubule sites was analyzed for Cd and inulin. The fluid/plasma Cd concentration ratio in BS averaged 0.2 and 1.0 during CdA and Cd-DTPA infusions, respectively. End-proximal tubule fractional excretion of Cd during CdA infusion averaged 0.34. Previous administration of CdA (1.0 mg/kg, 48 hr before micropuncture) increased the level of circulating Cd-metallothioneins, as measured by radioimmunoassay, but did not affect the luminal tubular uptake of Cd during CdA infusion. No net transepithelial movement of Cd-DTPA was measured. It is concluded that Cd ultrafiltered during inorganic Cd administration is taken up to a large extent by the convoluted part of proximal tubules.
Resumo:
109Cd was injected into the lumen of superficial proximal or distal tubules of rat kidneys, and recovery in the pelvic urine from the ipsilateral kidney was measured. Fractional recovery of labeled inulin always exceeded 90%. About 70% of injected inorganic Cd (CdCl2) was taken up by the epithelium of proximal tubules, while more than 90% of the injected amount was recovered after distal microinjection. The proximal fractional Cd uptake of a 1:1 (molar) Cd-L-cysteine complex was 82%, but was below 60% for a 5-10:1 molar ratio of cysteine:Cd. The chelate Cd-pentetic acid was recovered in final urine nearly quantitatively after proximal or distal microinjection. Fractional uptake of 109Cd from a Cd-metallothionein (Mt) complex, following proximal microinjection, ranged between 17 (Cd-Mt 0.19 mM) and 8% (Cd-Mt 1.5 mM). It is concluded that luminal Cd uptake by the tubular epithelium depends markedly on the chemical form of Cd and, when present, occurs mostly or exclusively in proximal tubules.
Resumo:
In correlative microscopy, light microscopy provides the overview and orientation of the complex cells and tissue, while electron microscopy offers the detailed localization and correlation of subcellular structures. In this chapter we offer detailed high-quality electron microscopical preparation methods for optimum preservation of the cellular ultrastructure. From such preparations serial thin sections are collected and used for comparative histochemical, immunofluorescence, and immunogold staining.In light microscopy histological stains identify the orientation of the sample and immunofluorescence labeling facilitates to find the region of interest, namely, the labeled cells expressing the macromolecule under investigation. Sections, labeled with immunogold are analyzed by electron microscopy in order to identify the label within the cellular architecture at high resolution.
Resumo:
Transcorneoscleral iontophoresis was used to enhance ocular penetration of a 21-bp NH(2) protected anti-NOSII oligonucleotides (ODNs) (fluorescein or infrared-41 labeled) in Lewis rats. Both histochemical localization and acrylamide sequencing gels were used. To evaluate the potential to down-regulate NOSII expression in the rat model of endotoxin-induced uveitis (EIU), anti-sense NOSII ODN, scrambled ODN or saline were iontophorezed into these animals' eyes. Iontophoresis facilitated the penetration of intact ODNs into the intraocular tissues of the rat eye and only the eyes receiving ODNs and electrical current demonstrated intact ODNs within the ocular tissues of both segments of the eye. Iontophoresis of anti-NOSII ODN significantly down-regulated the expression of NOSII expression in iris/ciliary body compared to the saline or scrambled ODN treated eyes. Nitrite production was also significantly reduced in the anti-NOSII applied eyes compared to those treated with saline. Using this system, intraocular delivery of ODNs can be significantly enhanced increasing the potential for successful gene therapy for human eye diseases.
Resumo:
A new and original reagent based on the use of highly fluorescent cadmium telluride (CdTe) quantum dots (QDs) in aqueous solution is proposed to detect weak fingermarks in blood on non-porous surfaces. To assess the efficiency of this approach, comparisons were performed with one of the most efficient blood reagents on non-porous surfaces, Acid Yellow 7 (AY7). To this end, four non-porous surfaces were studied, i.e. glass, transparent polypropylene, black polyethylene, and aluminium foil. To evaluate the sensitivity of both reagents, sets of depleted fingermarks were prepared, using the same finger, initially soaked with blood, which was then successively applied on the same surface without recharging it with blood or latent secretions. The successive marks were then cut in halves and the halves treated separately with each reagent. The results showed that QDs were equally efficient to AY7 on glass, polyethylene and polypropylene surfaces, and were superior to AY7 on aluminium. The use of QDs in new, sensitive and highly efficient latent and blood mark detection techniques appears highly promising. Health and safety issues related to the use of cadmium are also discussed. It is suggested that applying QDs in aqueous solution (and not as a dry dusting powder) considerably lowers the toxicity risks.
Resumo:
Rates of protein synthesis (PS) and turnover are more rapid during the neonatal period than during any other stage of postnatal life. Vitamin A and lactoferrin (Lf) can stimulate PS in neonates. However, newborn calves are vitamin A deficient and have a low Lf status, but plasma vitamin A and Lf levels increase rapidly after ingestion of colostrum. Neonatal calves (n = 6 per group) were fed colostrum or a milk-based formula without or with vitamin A, Lf, or vitamin A plus Lf to study PS in the jejunum and liver. l-[(13)C]Valine was intravenously administered to determine isotopic enrichment of free (nonprotein-bound) Val (AP(Free)) in the protein precursor pool, atom percentage excess (APE) of protein-bound Val, fractional protein synthesis rate (FSR) in the jejunum and liver, and isotopic enrichment of Val in plasma (APE(Pla)) and in the CO(2) of exhaled air (APE(Ex)). The APE, AP(Free), and FSR in the jejunum and liver did not differ significantly among groups. The APE(Ex) increased, whereas APE(Pla) decreased over time, but there were no group differences. Correlations were calculated between FSR(Jej) and histomorphometrical and histochemical data of the jejunum, and between FSR(Liv) and blood metabolites. There were negative correlations between FSR(Liv) and plasma albumin concentrations and between FSR(Jej) and the ratio of villus height:crypt depth, and there was a positive correlation between FSR(Jej) and small intestinal cell proliferation in crypts. Hence, there were no effects of vitamin A and Lf and no interactions between vitamin A and Lf on intestinal and hepatic PS. However, FSR(Jej) was correlated with histomorphometrical traits of the jejunum and FSR(Liv) was correlated with plasma albumin concentrations.
Differential phosphorylation of some proteins of the neuronal cytoskeleton during brain development.
Resumo:
The cytoskeleton is important for neuronal morphogenesis. During the postnatal development of cat brain, the molecular composition of the neuronal cytoskeleton changes with maturation. Several of its proteins change in their rate of expression, in their degree of phosphorylation, in their subcellular distribution, or in their biochemical properties. It is proposed that phosphorylation is an essential mechanism to regulate the plasticity of the early, juvenile-type cytoskeleton. Among such proteins are several microtubule-associated proteins (MAPs), such as MAP5a, MAP2c or the juvenile tau proteins. Phosphorylation may also act on neurofilaments, postulated to be involved in the adult-type stabilization of axons. These observations imply that phosphorylation may affect cytoskeleton function in axons and dendrites at various developmental stages. Yet, the mechanisms of phosphorylation and its regulation cascades are largely unknown. In view of the topic of this issue on CD15, the potential role of matrix molecules being involved in the modulation of phosphorylation activity and of cytoskeletal properties is addressed.
Time of injection determines the effect of alpha-MSH antiserum on DA neurons in psychological stress
Resumo:
Male rats were subjected to "psychological stress" which consisted in 10 sec footshock on the first day followed 24 hr later by a 10 sec stay in the experimental chamber without shock. Intravenous antiserum against alpha-MSH markedly changed the functional state of mesencephalic and hypothalamic DA neurons (assessed by histochemical microfluorimetry) when administered before the second session but not when given before the first session. These observations reveal an interesting parallelism in the temporal characteristics of the effects of alpha-MSH on avoidance behavior and central DA systems.
Resumo:
Insect eggs represent a threat for the plant as hatching larvae rapidly start with their feeding activity. Using a whole-genome microarray, we studied the expression profile of Arabidopsis (Arabidopsis thaliana) leaves after oviposition by two pierid butterflies. For Pieris brassicae, the deposition of egg batches changed the expression of hundreds of genes over a period of 3 d after oviposition. The transcript signature was similar to that observed during a hypersensitive response or in lesion-mimic mutants, including the induction of defense and stress-related genes and the repression of genes involved in growth and photosynthesis. Deposition of single eggs by Pieris rapae caused a similar although much weaker transcriptional response. Analysis of the jasmonic acid and salicylic acid mutants coi1-1 and sid2-1 indicated that the response to egg deposition is mostly independent of these signaling pathways. Histochemical analyses showed that egg deposition is causing a localized cell death, accompanied by the accumulation of callose, and the production of reactive oxygen species. In addition, activation of the pathogenesis-related1::beta-glucuronidase reporter gene correlated precisely with the site of egg deposition and was also triggered by crude egg extract. This study provides molecular evidence for the detection of egg deposition by Arabidopsis plants and suggests that oviposition causes a localized response with strong similarity to a hypersensitive response.
Resumo:
Using a substituted cysteine accessibility scan, we have investigated the structures that form the internal pore of the acid-sensing ion channel 1a. We have identified the amino acid residues Ala-22, Ile-33, and Phe-34 in the amino terminus and Arg-43 in the first transmembrane helix, which when mutated into cysteine, were modified by intracellular application of MTSET, resulting in channel inhibition. The inhibition of the R43C mutant by internal MTSET requires opening of the channel. In addition, binding of Cd2+ ions to R43C slows the channel inactivation. This indicates that the first transmembrane helix undergoes conformational changes during channel inactivation. The effect of Cd2+ on R43C can be obtained with Cd2+ applied at either the extracellular or the intracellular side, indicating that R43C is located in the channel pore. The block of the A22C, I33C, and F34C mutants by MTSET suggests that these residues in the amino terminus of the channel also participate to the internal pore.
Resumo:
Cutinized and suberized cell walls form physiological important plant-environment interfaces as they act as barriers limiting water and nutrient loss and protect from radiation and invasion by pathogens. Due to the lack of protocols for the isolation and analysis of cutin and suberin in Arabidopsis, the model plant for molecular biology, mutants and transgenic plants with a defined altered cutin or suberin composition are unavailable, causing that structure and function of these apoplastic barriers are still poorly understood. Transmission electron microscopy (TEM) revealed that Arabidopsis leaf cuticle thickness ranges from only 22 nm in leaf blades to 45 nm on petioles, causing the difficulty in cuticular membrane isolation. We report the use of polysaccharide hydrolases to isolate Arabidopsis cuticular membranes, suitable for depolymerization and subsequent compositional analysis. Although cutin characteristic omega-hydroxy acids (7%) and mid-chain hydroxylated fatty acids (8%) were detected, the discovery of alpha,omega-diacids (40%) and 2-hydroxy acids (14%) as major depolymerization products reveals a so far novel monomer composition in Arabidopsis cutin, but with chemical analogy to root suberin. Histochemical and TEM analysis revealed that suberin depositions were localized to the cell walls in the endodermis of primary roots and the periderm of mature roots of Arabidopsis. Enzyme digested and solvent extracted root cell walls when subjected to suberin depolymerization conditions released omega-hydroxy acids (43%) and alpha,omega-diacids (24%) as major components together with carboxylic acids (9%), alcohols (6%) and 2-hydroxyacids (0.1%). This similarity to suberin of other species indicates that Arabidopsis roots can serve as a model for suberized tissue in general.
Resumo:
The epithelial sodium channel (ENaC) regulates the sodium reabsorption in the collecting duct principal cells of the nephron. ENaC is mainly regulated by hormones such as aldosterone and vasopressin, but also by serine proteases, Na+ and divalent cations. The crystallization of an ENaC/Deg member, the Acid Sensing Ion Channel, has been recently published but the pore-lining residues constitution of ENaC internal pore remains unclear. It has been reported that mutation aS589C of the selectivity filter on the aENaC subunit, a three residues G/SxS sequence, renders the channel permeant to divalent cations and sensitive to extracellular Cd2+. We have shown in the first part of my work that the side chain of aSer589 residue is not pointing toward the pore lumen, permitting the Cd2+ to permeate through the ion pore and to coordinate with a native cysteine, gCys546, located in the second transmembrane domain of the gENaC subunit. In a second part, we were interested in the sulfhydryl-reagent intracellular inhibition of ENaC-mediated Na+ current. Kellenberger et al. have shown that ENaC is rapidly and reversibly inhibited by internal sulfhydryl reagents underlying the involvement of intracellular cysteines in the internal regulation of ENaC. We set up a new approach comprising a Substituted Cysteine Analysis Method (SCAM) using intracellular MTSEA-biotin perfusion coupled to functional and biochemical assays. We were thus able to correlate the cysteine-modification of ENaC by methanethiosulfonate (MTS) and its effect on sodium current. This allowed us to determine the amino acids that are accessible to intracellular MTS and the one important for the inhibition of the channel. RESUME : Le canal épithélial sodique ENaC est responsable de la réabsorption du sodium dans les cellules principales du tubule collecteur rénal. Ce canal est essentiellement régulé par voie hormonale via l'aldostérone et la vasopressine mais également par des sérines protéases, le Na+ lui-même et certains cations divalents. La cristallisation du canal sodique sensible au pH acide, ASIC, un autre membre de la famille ENaC/Deg, a été publiée mais les acides aminés constituant le pore interne d'ENaC restent indéterminés. Il a été montré que la mutation aS589C du filtre de sélectivité de la sous-unité aENaC permet le passage de cations divalents et l'inhibition du canal par le Cd2+ extracellulaire. Dans un premier temps, nous avons montré que la chaîne latérale de la aSer589 n'est pas orientée vers l'intérieur du pore, permettant au Cd2+ de traverser le canal et d'interagir avec une cysteine native du second domaine transrnembranaire de la sous-unité γENaC, γCys546. Dans un second temps, nous nous sommes intéressés au mécanisme d'inhibition d'ENaC par les réactifs sulfhydryl internes. Kellenberger et al. ont montré l'implication de cystéines intracellulaires dans la régulation interne d'ENaC par les réactifs sulfhydryl. Nous avons mis en place une nouvelle approche couplant la méthode d'analyse par substitution de cystéines (SCAM) avec des perfusions intracellulaires de MTSEAbiotine. Ainsi, nous pouvons meure en corrélation les modifications des cystéines d'ENaC par les réactifs methanethiosulfonates (MTS) avec leur effet sur le courant sodique, et donc mettre en évidence les acides aminés accessibles aux MTS intracellulaires et ceux qui sont importants dans la fonction du canal.
Resumo:
SUMMARY The human auditory cortex, located on the supratemporal plane of the temporal lobe, is divided in a primary auditory area and several non-primary areas surrounding it. These different areas show anatomical and functional differences. Many studies have focussed on auditory areas in non-human primates, using investigation techniques such as electrophysiological recordings, tracing of neural connections, or immunohistochemical and histochemical staining. Some of these studies have suggested parallel and hierarchical organization of the cortical auditory areas as well as subcortical auditory relays. In humans, only few studies have investigated these regions immunohistochemically, but activation and lesion studies speak in favour of parallel and hierarchical organization, very similar to that of non-human primates. Calcium-binding proteins and metabolic markers were used to investigate possible correlates of hierarchical and parallel organization in man. Calcium-binding proteins, parvalbumin, calretinin and calbindin, modulate the concentration of intracellular free calcium ions and were found in distinct subpopulations of GABAergic neurons in non-human primates species. In our study, their distribution showed several differences between auditory areas: the primary auditory area was darkly stained for both parvalbumin and calbindin, and their expression rapidly decreased while moving away from the primary area. This staining pattern suggests a hierarchical organization of the areas, in which the more darkly stained areas could correspond to an earlier integration level and the areas showing light staining may correspond to higher level integration areas. Parallel organization of primary and non-primary auditory areas was suggested by the complementarity, within a given area, between parvalbumin and calbindin expression across layers. To investigate the possible differences in the energetic metabolism of the cortical auditory areas, several metabolic markers were used: cytochrome oxidase and LDH1 were used as oxidative metabolism markers and LDH5 was used as glycolytic metabolism marker. The results obtained show a difference in the expression of enzymes involved in oxidative metabolism between areas. In the primary auditory area the oxidative metabolism markers were maximally expressed in layer IV. In contrast, higher order areas showed maximal staining in supragranular layers. The expression of LDH5 varied in patches, but did not differ between the different hierarchical auditory areas. The distribution of the two LDH enzymes isoforms also provides information about cellular aspects of metabolic organization, since neurons expressed the LDH1 isoform whereas astrocytes express primarily LDH5, but some astrocytes also contained the LDH1 isoform. This cellular distribution pattern supports the hypothesis of the existence of an astrocyte-neuron lactate shuttle, previously suggested in rodent studies, and in particular of lactate transfer from astrocytes, which produce lactate from the glucose obtained from the circulation, to neurons that use lactate as energy substrate. In conclusion, the hypothesis of parallel and hierarchical organization of the auditory areas can be supported by CaBPs, cytochrome oxidase and LDH1 distribution. Moreover, the two LDHs cellular distribution pattern support the hypothesis of an astrocyte-neuron lactate shuttle in human cortex.
Resumo:
PURPOSE: Apoptotic arterial wall vascular smooth muscle cell death is known to contribute to plaque vulnerability and rupture. Novel apoptotic markers like apolipoprotein C-I have been implicated in apoptotic human vascular smooth muscle cell death via recruiting a neutral sphingomyelinase (N-SMase)-ceramide pathway. In vivo relevance of these observations in an animal model of plaque rupture has not been shown. METHODS AND RESULTS: Using Watanabe rabbits, we investigated three different groups (group 1, three normal Watanabe rabbits; group 2, six Watanabe rabbits fed with high cholesterol diet for 3 months; group 3, five Watanabe rabbits with similar diet but additional endothelial denudation). We followed progression of atherosclerosis to pharmacologically induced plaque rupture non-invasively using novel 3D magnetic resonance Fast-Field-Echo angiography (TR=7.2, TE=3.6 ms, matrix=512 x 512) and Fast-Spin-Echo vessel wall imaging methods (TR=3 heart beats, TE=10.5 ms, matrix=304 x 304) on 1.5 T MRI. MRI provided excellent image quality with good MRI versus histology vessel wall thickness correlation (r=0.8). In six animals of group 2/3 MRI detected neo-intimal dissection in the abdominal aorta which was accompanied by immuno-histochemical demonstration of concomitant aforementioned novel apoptotic markers, previously implicated in the apoptotic smooth muscle cell death in vitro. CONCLUSIONS: Our studies suggest a potential role for the signal transduction pathway involving apolipoprotein C-I for in vivo apoptosis and atherosclerotic plaque rupture visualized by MRI.