33 resultados para Histidine-rich protein


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Canine distemper virus (CDV) produces a glycosylated type I fusion protein (F) with an internal hydrophobic signal sequence beginning around 115 residues downstream of the first AUG used for translation initiation. Cleavage of the signal sequence yields the F0 molecule, which is cleaved into the F1 and F2 subunits. Surprisingly, when all in-frame AUGs located in the first third of the F gene were mutated a protein of the same molecular size as the F0 molecule was still expressed from both the Onderstepoort (OP) and A75/17-CDV F genes. We designated this protein, which is initiated from a non-AUG codon protein Fx. Site-directed mutagenesis allowed to identify codon 85, a GCC codon coding for alanine, as the most likely position from which translation initiation of Fx occurs in OP-CDV. Deletion analysis demonstrated that at least 60 nucleotides upstream of the GCC codon are required for efficient Fx translation. This sequence is GC-rich, suggesting extensive folding. Secondary structure may therefore be important for translation initiation at codon 85.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in the Bacillus subtilis gene that affect the activity of the uridine diphosphate (UDP)-N-acetylglucosamine (GlcNAc) 4-epimerase (EC 5.1.3.7) were shown to map to galE, the structural gene of the UDP-glucose (Glc) 4-epimerase (EC 5.1.3.2). This genetic evidence that the same enzyme can catalyse the epimerisation of hexoses as well as of their N-acetylated forms is confirmed by in vitro assays with purified enzyme. It appears that in B. subtilis, Gne (GneA, GalE) is involved in two distinct and essential functions, i.e., cell detoxification under certain growth conditions and the biosynthesis of anionic cell wall polymers. We discuss the evidence that such enzymes capable of utilizing both UDP-hexoses and UDP-N-acetylhexosamines are present in other organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In mammals, many aspects of metabolism are under circadian control. At least in part, this regulation is achieved by core-clock or clock-controlled transcription factors whose abundance and/or activity oscillate during the day. The clock-controlled proline- and acidic amino acid-rich domain basic leucine zipper proteins D-site-binding protein, thyrotroph embryonic factor, and hepatic leukemia factor have previously been shown to participate in the circadian control of xenobiotic detoxification in liver and other peripheral organs. Here we present genetic and biochemical evidence that the three proline- and acidic amino acid-rich basic leucine zipper proteins also play a key role in circadian lipid metabolism by influencing the rhythmic expression and activity of the nuclear receptor peroxisome proliferator-activated receptor α (PPARα). Our results suggest that, in liver, D-site-binding protein, hepatic leukemia factor, and thyrotroph embryonic factor contribute to the circadian transcription of genes specifying acyl-CoA thioesterases, leading to a cyclic release of fatty acids from thioesters. In turn, the fatty acids act as ligands for PPARα, and the activated PPARα receptor then stimulates the transcription of genes encoding proteins involved in the uptake and/or metabolism of lipids, cholesterol, and glucose metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular mechanisms involved in the regulation of gene expression by transforming growth factor-beta (TGF-beta) have been analyzed. We show that TGF-beta specifically induces the activity of the proline-rich trans-activation domain of CTF-1, a member of the CTF/NF-I family of transcription factors. A TGF-beta-responsive domain (TRD) in the proline-rich transcriptional activation sequence of CTF-1 was shown to mediate TGF-beta induction in NIH-3T3 cells. Mutagenesis studies indicated that this domain is not the primary target of regulatory phosphorylations, suggesting that the growth factor may regulate a CTF-1-interacting protein. A two-hybrid screening assay identified a nucleosome component, histone H3, as a specific CTF-1-interacting protein in yeast. Furthermore, the CTF-1 trans-activation domain was shown to interact with histone H3 in both transiently and stably transfected mammalian cells. This interaction requires the TRD, and it appears to be upregulated by TGF-beta in vivo. Moreover, point mutations in the TRD that inhibit TGF-beta induction also reduce interaction with histone H3. In vitro, the trans-activation domain of CTF-1 specifically contacts histone H3 and oligomers of histones H3 and H4, and full-length CTF-1 was shown to alter the interaction of reconstituted nucleosomal cores with DNA. Thus, the growth factor-regulated trans-activation domain of CTF-1 can interact with chromatin components through histone H3. These findings suggest that such interactions may regulate chromatin dynamics in response to growth factor signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extracellular pectic matrix is a rich source of oligogalacturonic acid (OGA), one of the most abundant polymeric regulatory molecules on the earth's surface. OGAs regulate the expression of a variety of defense genes and have also been implicated in developmental processes. Little is known about how cells perceive OGAs and we have been attempting to characterise proteins capable of interacting with these molecules. We recently succeeded in cloning a cDNA encoding a small OGA-binding protein, remorin. OGA-binding to remorin is not highly specific, the protein binds homogalacturonides, complex pectic polymers and the animal polyuronide heparin. This lack of specificity contrasts with that often observed with classical receptors and the function of remorin remains to be discovered. Remorin copurifies with the plasma membrane but is a very hydrophilic polypeptide. Its behavior during cell fractionation, as well as a number of properties including the OGA-stimulated in vitro phosphorylation and preliminary localization studies, all suggest parallels with some viral movement proteins. Some of these comparisons will be presented. Experiments to directly test for the possible role of this protein in cell-to-cell signalling are in progress. EEF is supported by FNRS grant 31-3672-92.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The protein Bcl10 contributes to adaptive and innate immunity through the assembly of a signaling complex that plays a key role in antigen receptor and FcR-induced NF-κB activation. Here we demonstrate that Bcl10 has an NF-κB-independent role in actin and membrane remodeling downstream of FcR in human macrophages. Depletion of Bcl10 impaired Rac1 and PI3K activation and led to an abortive phagocytic cup rich in PI(4,5)P(2), Cdc42, and F-actin, which could be rescued with low doses of F-actin depolymerizing drugs. Unexpectedly, we found Bcl10 in a complex with the clathrin adaptors AP1 and EpsinR. In particular, Bcl10 was required to locally deliver the vesicular OCRL phosphatase that regulates PI(4,5)P(2) and F-actin turnover, both crucial for the completion of phagosome closure. Thus, we identify Bcl10 as an early coordinator of NF-κB-mediated immune response with endosomal trafficking and signaling to F-actin remodeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The circadian clock drives the rhythmic expression of a broad array of genes that orchestrate metabolism, sleep wake behavior, and the immune response. Clock genes are transcriptional regulators engaged in the generation of circadian rhythms. The cold inducible RNA-binding protein (CIRBP) guarantees high amplitude expression of clock. The cytokines TNF and TGFβ impair the expression of clock genes, namely the period genes and the proline- and acidic amino acid-rich basic leucine zipper (PAR-bZip) clock-controlled genes. Here, we show that TNF and TGFβ impair the expression of Cirbp in fibroblasts and neuronal cells. IL-1β, IL-6, IFNα, and IFNγ do not exert such effects. Depletion of Cirbp is found to increase the susceptibility of cells to the TNF-mediated inhibition of high amplitude expression of clock genes and modulates the TNF-induced cytokine response. Our findings reveal a new mechanism of cytokine-regulated expression of clock genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resistance of human immunodeficiency virus type 1 (HIV-1) to antiretroviral agents results from target gene mutation within the pol gene, which encodes the viral protease, reverse transcriptase (RT), and integrase. We speculated that mutations in genes other that the drug target could lead to drug resistance. For this purpose, the p1-p6(gag)-p6(pol) region of HIV-1, placed immediately upstream of pol, was analyzed. This region has the potential to alter Pol through frameshift regulation (p1), through improved packaging of viral enzymes (p6(Gag)), or by changes in activation of the viral protease (p6(Pol)). Duplication of the proline-rich p6(Gag) PTAP motif, necessary for late viral cycle activities, was identified in plasma virus from 47 of 222 (21.2%) patients treated with nucleoside analog RT inhibitor (NRTI) antiretroviral therapy but was identified very rarely from drug-naïve individuals. Molecular clones carrying a 3-amino-acid duplication, APPAPP (transframe duplication SPTSPT in p6(Pol)), displayed a delay in protein maturation; however, they packaged a 34% excess of RT and exhibited a marked competitive growth advantage in the presence of NRTIs. This phenotype is reminiscent of the inoculum effect described in bacteriology, where a larger input, or a greater infectivity of an organism with a wild-type antimicrobial target, leads to escape from drug pressure and a higher MIC in vitro. Though the mechanism by which the PTAP region participates in viral maturation is not known, duplication of this proline-rich motif could improve assembly and packaging at membrane locations, resulting in the observed phenotype of increased infectivity and drug resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pseudomonas protegens is a biocontrol rhizobacterium with a plant-beneficial and an insect pathogenic lifestyle, but it is not understood how the organism switches between the two states. Here, we focus on understanding the function and possible evolution of a molecular sensor that enables P. protegens to detect the insect environment and produce a potent insecticidal toxin specifically during insect infection but not on roots. By using quantitative single cell microscopy and mutant analysis, we provide evidence that the sensor histidine kinase FitF is a key regulator of insecticidal toxin production. Our experimental data and bioinformatic analyses indicate that FitF shares a sensing domain with DctB, a histidine kinase regulating carbon uptake in Proteobacteria. This suggested that FitF has acquired its specificity through domain shuffling from a common ancestor. We constructed a chimeric DctB-FitF protein and showed that it is indeed functional in regulating toxin expression in P. protegens. The shuffling event and subsequent adaptive modifications of the recruited sensor domain were critical for the microorganism to express its potent insect toxin in the observed host-specific manner. Inhibition of the FitF sensor during root colonization could explain the mechanism by which P. protegens differentiates between the plant and insect host. Our study establishes FitF of P. protegens as a prime model for molecular evolution of sensor proteins and bacterial pathogenicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Along the chromosome of the obligate intracellular bacteria Protochlamydia amoebophila UWE25, we recently described a genomic island Pam100G. It contains a tra unit likely involved in conjugative DNA transfer and lgrE, a 5.6-kb gene similar to five others of P. amoebophila: lgrA to lgrD, lgrF. We describe here the structure, regulation and evolution of these proteins termed LGRs since encoded by "Large G+C-Rich" genes. RESULTS: No homologs to the whole protein sequence of LGRs were found in other organisms. Phylogenetic analyses suggest that serial duplications producing the six LGRs occurred relatively recently and nucleotide usage analyses show that lgrB, lgrE and lgrF were relocated on the chromosome. The C-terminal part of LGRs is homologous to Leucine-Rich Repeats domains (LRRs). Defined by a cumulative alignment score, the 5 to 18 concatenated octacosapeptidic (28-meric) LRRs of LGRs present all a predicted alpha-helix conformation. Their closest homologs are the 28-residue RI-like LRRs of mammalian NODs and the 24-meres of some Ralstonia and Legionella proteins. Interestingly, lgrE, which is present on Pam100G like the tra operon, exhibits Pfam domains related to DNA metabolism. CONCLUSION: Comparison of the LRRs, enable us to propose a parsimonious evolutionary scenario of these domains driven by adjacent concatenations of LRRs. Our model established on bacterial LRRs can be challenged in eucaryotic proteins carrying less conserved LRRs, such as NOD proteins and Toll-like receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: The AU-rich elements (AREs) consisting of repeated AUUUA motifs confer rapid degradation to many cellular mRNAs when present in the 3' untranslated region (3'UTR). We have studied the instability of interleukin-6 mRNA by grafting its 3' untranslated region to a stable green fluorescent protein mRNA. Subsequent scanning mutagenesis identified two conserved elements, which taken together account for most of the instability. The first corresponds to a short non-canonical AU-rich element. The other comprises a sequence predicted to form astern-loop structure. Both elements need to be present in order to confer full instability (Paschoud et al. 2006). Destabilization of ARE-containing mRNAs is thought to involve ARE-binding proteins such as AUF1. We tested whether AUF1 binding to interleukin-6 mRNA correlates with decreased mRNA stability. Overexpression of myc-tagged p37AUFl and p42AUF1 as well as suppression of all four AUF1 isoforms by RNA interference stabilized the interleukin-6 mRNA. Furthermore, the interleukin-6 mRNA co-immunoprecipitated specifically with myc-tagged p37AUF1 and p42AUF1 in cell extracts. Both the stabilization and AUF1-binding required the non-canonical AU-rich sequence. These results indicate that AUF1 binds to the AU-rich element in vivo and promotes interleukin6 mRNA degradation. The combination of mRNA co-immunoprecipitation with microarray technology revealed that at least 500 cellular mRNAs associate with AUF1. Résumé: "La présence d'éléments riches en A et U (ARE), en particulier les motifs répétés d'AUUUA dans la région 3' non traduite, confère une dégradation rapide à beaucoup d'ARN cellulaires. Nous avons étudié l'instabilité de l'ARN codant pour l'interleukine 6 en greffant sa région 3' non traduite à un ARN stable codant pour la protéine fluorescente verte. La mutagenèse systématique des séquences non traduites a permis l'identification de deux éléments conservés qui confèrent l'instabilité à l'ARN. Le premier correspond à un élément AU-riche non canonique court. Le second comporte une structure en 'épingle à cheveux'. Tous les deux éléments doivent être présents afin de conférer une instabilité complète (Paschoud et al. 2006). On pense que des protéines telles que AUF1, pouvant se lier aux éléments ARE, sont impliquées dans la dégradation des ARN messagers. Nous avons examiné si la liaison de AUFl sur l'ARN de l'interleukine 6 corrèle avec une stabilité diminuée. La surexpression des protéines p37AUF1 et de p42AUF1 myc-étiquetées ainsi que la suppression de chacun des quatre isoformes de AUF1 par interférence d'ARN a stabilisé l'ARN messager d'interleukine 6. En outre, cet ARN co-immunoprécipite spécifiquement avec p37AUF1 et p42AUF1 dans des extraits cellulaires. La présence de l'élément AUriche non canonique est nécessaire pour la stabilisation de l'ARN et sa liaison avec AUFI. Ces résultats indiquent qu'AUF1 se lie à l'élément AU-riche in vivo et favorise la dégradation de l'ARN messager d'interleukine 6. La combinaison des techniques de coimmunoprécipitation des ARN messagers et des analyses par `microarray' indique qu'au moins 500 ARN cellulaires s'associent à AUF1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regulation of viral genome expression is the result of complex cooperation between viral proteins and host cell factors. We report here the characterization of a novel cellular factor sharing homology with the specific cysteine-rich C-terminal domain of the basic helix-loop-helix repressor protein I-mfa. The synthesis of this new factor, called HIC for Human I-mfa domain-Containing protein, is controlled at the translational level by two different codons, an ATG and an upstream non-ATG translational initiator, allowing the production of two protein isoforms, p32 and p40, respectively. We show that the HIC protein isoforms present different subcellular localizations, p32 being mainly distributed throughout the cytoplasm, whereas p40 is targeted to the nucleolus. Moreover, in trying to understand the function of HIC, we have found that both isoforms stimulate in T-cells the expression of a luciferase reporter gene driven by the human T-cell leukemia virus type I-long terminal repeat in the presence of the viral transactivator Tax. We demonstrate by mutagenesis that the I-mfa-like domain of HIC is involved in this regulation. Finally, we also show that HIC is able to down-regulate the luciferase expression from the human immunodeficiency virus type 1-long terminal repeat induced by the viral transactivator Tat. From these results, we propose that HIC and I-mfa represent two members of a new family of proteins regulating gene expression and characterized by a particular cysteine-rich C-terminal domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

G-protein-signaling pathways convey extracellular signals inside the cells and regulate distinct physiological responses. This type of signaling pathways consists of three major components: G-protein-coupled receptors (GPCRs), heterotrimeric G proteins (G-proteins) and downstream effectors. Upon ligand binding, GPCRs activate heterotrimeric G proteins to initiate the signaling cascade. Dysfunction of GPCR signaling correlates with numerous diseases such as diabetes, nervous and immune system deficiency, and cancer. As the signaling switcher, G-proteins (Gs, Gq/11, G12/13, and Gi/o) have been an appealing topic of research for decades. A heterotrimeric G-protein is composed of three subunits, the guanine nucleotide associated a-subunit, ß and y subunits. In general, the duration of signaling is determined by the lifetime of activated (GTP bound) Ga subunits. Identification of novel communication partners of Ga subunits appears to be an attractive way to understand the machinery of GPCR signaling. In our lab, we mainly focus on Gao, which is abundantly expressed in the nervous system. Here we present two novel interacting partners of Drosophila Gao: Dhit and Kermit, identified through yeast two-hybrid screening and genetic screening respectively. Dhit is characterized by a small size with a conserved RGS domain and an N-terminal cysteine rich motif. The RGS domain possesses the GAP (GTPase activating protein) activity towards G proteins. However, we found that Dhit exerts not only the GAP activity but also the GDI (guanine nucleotide dissociation inhibitor) activity towards Gao. The unexpected GDI activity is preserved in GAIP/RGS19 - a mammalian homologue of Dhit. Further experiments confirmed the GDI activity of Dhit and GAIP/RGS19 in Drosophila and mammalian cell models. Therefore, we propose that Dhit and its mammalian homologues modulate GPCR signaling by a double suppression of Ga subunits - suppression of their nucleotide exchange with GTP and acceleration of their hydrolysis of GTP. Kermit/GEPC was first identified as a binding partner of GAIP/RGS19 in a yeast two- hybrid screen. Instead of interacting with the Drosophila homologue of GAIP/RGS19 (Dhit), Kermit binds to Gao in vivo and in vitro. The functional consequence of Kermit/Gao interaction is the regulation of localization of Vang (one of the planar cell polarity core components) at the apical membrane. Overall, my work elaborated the action of Gao with its two interaction partners in Gao- mediated signaling pathway. Conceivably, the understanding of GPCR signaling including Gao and its regulators or effectors will ultimately shed light on future pharmaceutical research. - Les voies de signalisation médiées par les protéines G transmettent des signaux extracellulaires à l'intérieur des cellules pour réguler des réponses physiologiques distinctes. Cette voie de signalisation consiste en trois composants majeurs : les récepteurs couplés aux protéines G (GPCRs), les protéines G hétérotrimériques (G-proteins) et les effecteurs en aval. Suite à la liaison du ligand, les GPCRs activent les protéines G hétérotrimériques qui initient la cascade de signalisation. Des dysfonctions dans la signalisation médiée par les GPCRs sont corrélées avec de nombreuses maladies comme le diabète, des déficiences immunes et nerveuses, ainsi que le cancer. Puisque la voie de signalisation s'active et se désactive, les protéines G (Gs, Gq/11, G12/13 et Gi/o) ont été un sujet de recherche attrayant pendant des décennies. Une protéine G hétérotrimérique est composée de trois sous-unités, la sous-unité a associée au nucléotide guanine, ainsi que les sous-unités ß et y. En général, la durée du signal est déterminée par le temps de demi-vie des sous-unités Ga activées (Ga liées au GTP). Identifier de nouveaux partenaires de communication des sous-unités Ga se révèle être un moyen attractif de comprendre la machinerie de la signalisation par les GPCRs. Dans notre laboratoire nous nous sommes concentrés principalement sur Gao qui est exprimée de manière abondante dans le système nerveux. Nous présentons ici deux nouveaux partenaires qui interagissent avec Gao chez la drosophile: Dhit et Kermit, qui ont été identifiés respectivement par la méthode du yeast two-hybrid et par criblage génétique. Dhit est caractérisé par une petite taille, avec un domaine RGS conservé et un motif N- terminal riche en cystéines. Le domaine RGS contient une activité GAP (GTPase activating protein) pour les protéines G. Toutefois, nous avons découvert que Dhit exerce non seulement une activité GAP mais aussi une activité GDI (guanine nucleotide dissociation inhibitor) à l'égard de Gao. Cette activité GDI inattendue est préservée dans RGS19 - un homologue de Dhit chez les mammifères. Des expériences supplémentaires ont confirmé l'activité GDI de Dhit et de RGS19 chez Drosophila melanogaster et les modèles cellulaires mammifères. Par conséquent, nous proposons que Dhit et ses homologues mammifères modulent la signalisation GPCR par une double suppression des sous-unités Ga - suppression de leur nucléotide d'échange avec le GTP et une accélération dans leur hydrolyse du GTP. Kermit/GIPC a été premièrement identifié comme un partenaire de liaison de RGS19 dans le criblage par yeast two-hybrid. Au lieu d'interagir avec l'homologue chez la drosophile de RGS19 (Dhit), Kermit se lie à Gao in vivo et in vitro. La conséquence fonctionnelle de l'interaction Kermit/Gao est la régulation de la localisation de Vang, un des composants essentiel de la polarité planaire cellulaire, à la membrane apicale. Globalement, mon travail a démontré l'action de Gao avec ses deux partenaires d'interaction dans la voie de signalisation médiée par Gao. La compréhension de la signalisation par les GPCRs incluant Gao et ses régulateurs ou effecteurs aboutira à mettre en lumière de futurs axes dans la recherche pharmacologique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transforming growth factor beta (TGF-beta) and tumor necrosis factor alpha (TNF-alpha) often exhibit antagonistic actions on the regulation of various activities such as immune responses, cell growth, and gene expression. However, the molecular mechanisms involved in the mutually opposing effects of TGF-beta and TNF-alpha are unknown. Here, we report that binding sites for the transcription factor CTF/NF-I mediate antagonistic TGF-beta and TNF-alpha transcriptional regulation in NIH3T3 fibroblasts. TGF-beta induces the proline-rich transactivation domain of specific CTF/NF-I family members, such as CTF-1, whereas TNF-alpha represses both the uninduced as well as the TGF-beta-induced CTF-1 transcriptional activity. CTF-1 is thus the first transcription factor reported to be repressed by TNF-alpha. The previously identified TGF-beta-responsive domain in the proline-rich transcriptional activation sequence of CTF-1 mediates both transcriptional induction and repression by the two growth factors. Analysis of potential signal transduction intermediates does not support a role for known mediators of TNF-alpha action, such as arachidonic acid, in CTF-1 regulation. However, overexpression of oncogenic forms of the small GTPase Ras or of the Raf-1 kinase represses CTF-1 transcriptional activity, as does TNF-alpha. Furthermore, TNF-alpha is unable to repress CTF-1 activity in NIH3T3 cells overexpressing ras or raf, suggesting that TNF-alpha regulates CTF-1 by a Ras-Raf kinase-dependent pathway. Mutagenesis studies demonstrated that the CTF-1 TGF-beta-responsive domain is not the primary target of regulatory phosphorylations. Interestingly, however, the domain mediating TGF-beta and TNF-alpha antagonistic regulation overlapped precisely the previously identified histone H3 interaction domain of CTF-1. These results identify CTF-1 as a molecular target of mutually antagonistic TGF-beta and TNF-alpha regulation, and they further suggest a molecular mechanism for the opposing effects of these growth factors on gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyperandrogenemia predisposes an organism toward developing impaired insulin sensitivity. The aim of our study was to evaluate endocrine and metabolic effects during early allostasis induced by a fructose-rich diet (FRD) in normal (control; CT) and neonatal-androgenized (testosterone propionate; TP) female adult rats. CT and TP rats were fed either a normal diet (ND) or an FRD for 3 weeks immediately before the day of study, which was at age 100 days. Energy intake, body weight (BW), parametrial (PM) fat characteristics, and endocrine/metabolic biomarkers were then evaluated. Daily energy intake was similar in CT and TP rats regardless of the differences in diet. When compared with CT-ND rats, the TP-ND rats were heavier, had larger PM fat, and were characterized by basal hypoadiponectinemia and enhanced plasma levels of non-esterified fatty acid (NEFA), plasminogen activator inhibitor-1 (PAI-1), and leptin. FRD-fed CT rats, when compared with CT-ND rats, had high plasma levels of NEFA, triglyceride (TG), PAI-1, leptin, and adiponectin. The TP-FRD rats, when compared with TP-ND rats, displayed enhanced leptinemia and triglyceridemia, and were hyperinsulinemic, with glucose intolerance. The PM fat taken from TP rats displayed increase in the size of adipocytes, decrease in adiponectin (protein/gene), and a greater abundance of the leptin gene. PM adipocyte response to insulin was impaired in CT-FRD, TP-ND, and TP-FRD rats. A very short duration of isocaloric FRD intake in TP rats induced severe metabolic dysfunction at the reproductive age. Our study supports the hypothesis that the early-androgenized female rat phenotype is highly susceptible to developing endocrine/metabolic dysfunction. In turn, these abnormalities enhance the risk of metabolic syndrome, obesity, type 2 diabetes, and cardiovascular disease.