90 resultados para Hemilabile ligand
Resumo:
BackgroundMutations in TNFRSF13B, the gene encoding transmembrane activator and calcium modulator cyclophilin ligand interactor (TACI), are found in 10% of patients with common variable immunodeficiency. However, the most commonly detected mutation is the heterozygous change C104R, which is also found in 0.5% to 1% of healthy subjects. The contribution of the C104R mutation to the B-cell defects observed in patients with common variable immunodeficiency therefore remains unclear.ObjectiveWe sought to define the functional consequences of the C104R mutation on B-cell function.MethodsWe performed in vitro studies of TACI C104R expression and signaling. A knock-in mouse with the equivalent mutation murine TACI (mTACI) C76R was generated as a physiologically relevant model of human disease. We examined homozygous and heterozygous C76R mutant mice alongside wild-type littermates and studied specific B-cell lineages and antibody responses to T cell-independent and T cell-dependent challenge.ResultsC104R expression and ligand binding are significantly diminished when the mutant protein is expressed in 293T cells or in patients' cell lines. This leads to defective nuclear factor κB activation, which is proportionally restored by reintroduction of wild-type TACI. Mice heterozygous and homozygous for mTACI C76R exhibit significant B-cell dysfunction with splenomegaly, marginal zone B-cell expansion, diminished immunoglobulin production and serological responses to T cell-independent antigen, and abnormal immunoglobulin synthesis.ConclusionsThese data show that the C104R mutation and its murine equivalent, C76R, can significantly disrupt TACI function, probably through haploinsufficiency. Furthermore, the heterozygous C76R mutation alone is sufficient to disturb B-cell function with lymphoproliferation and immunoglobulin production defects.
Resumo:
The feline immunodeficiency virus (FIV) targets activated CD4-positive helper T cells preferentially, inducing an AIDS-like immunodeficiency in its natural host species, the domestic cat. The primary receptor for FIV is CD134, a member of the tumour necrosis factor receptor superfamily (TNFRSF) and all primary viral strains tested to date use CD134 for infection. To investigate the effect of the natural ligand for CD134 on FIV infection, feline CD134L was cloned and expressed in soluble forms. However, in contrast to murine or human CD134L, soluble feline CD134L (sCD134L) did not bind to CD134. Receptor-binding activity was restored by enforced covalent trimerisation following the introduction of a synthetic trimerisation domain from tenascin (TNC). Feline and human TNC-CD134Ls retained the species-specificity of the membrane-bound forms of the ligand while murine TNC-CD134L displayed promiscuous binding to feline, human or murine CD134. Feline and murine TNC-CD134Ls were antagonists of FIV infection; however, potency was both strain-specific and substrate-dependent, indicating that the modulatory effects of endogenous sCD134L, or exogenous CD134Lbased therapeutics, may vary depending on the viral strain.
Resumo:
In a global approach combining fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), and fluorescence resonance energy transfer (FRET), we address the behavior in living cells of the peroxisome proliferator-activated receptors (PPARs), a family of nuclear receptors involved in lipid and glucose metabolism, inflammation control, and wound healing. We first demonstrate that unlike several other nuclear receptors, PPARs do not form speckles upon ligand activation. The subnuclear structures that may be observed under some experimental conditions result from overexpression of the protein and our immunolabeling experiments suggest that these structures are subjected to degradation by the proteasome. Interestingly and in contrast to a general assumption, PPARs readily heterodimerize with retinoid X receptor (RXR) in the absence of ligand in living cells. PPAR diffusion coefficients indicate that all the receptors are engaged in complexes of very high molecular masses and/or interact with relatively immobile nuclear components. PPARs are not immobilized by ligand binding. However, they exhibit a ligand-induced reduction of mobility, probably due to enhanced interactions with cofactors and/or chromatin. Our study draws attention to the limitations and pitfalls of fluorescent chimera imaging and demonstrates the usefulness of the combination of FCS, FRAP, and FRET to assess the behavior of nuclear receptors and their mode of action in living cells.
Resumo:
Despite the presence of tumor-specific effector cells in the circulation of cancer patients, the immune response of the majority of these patients is not sufficient to prevent the growth and spread of their tumors. That tumor cells can be killed in vitro by tumor-reactive cytotoxic T cells is testimony to the fact that the tumors are not inherently resistant to T cell killing, but rather that there is a failure in immune recognition and effector cell activation. Many reasons for this failure of the body's defense system have been suggested, including the inability of tumor-reactive lymphocytes to migrate to tumor tissue. Here we designed a strategy to improve homing of primary lymphocytes into vascularized tumors. As a homing molecule we selected the integrin alpha v beta 3 since it is expressed by angiogenic vascular endothelium in tumors. To promote lymphocyte adhesion to alpha v beta 3 we "painted" primary lymphocytes with a recombinant, glycosylphosphatidylinositol-linked high-affinity ligand for alpha v beta 3. These painted lymphocytes specifically bound to alpha v beta 3 in vitro and homed to vascularized, solid tumors in vivo. This novel strategy may provide a significant advance in anti-tumor treatment such as adoptive immune therapy.
Resumo:
The activation of the transcription factor NF-kappaB often results in protection against apoptosis. In particular, pro-apoptotic tumor necrosis factor (TNF) signals are blocked by proteins that are induced by NF-kappaB such as TNFR-associated factor 1 (TRAF1). Here we show that TRAF1 is cleaved after Asp-163 when cells are induced to undergo apoptosis by Fas ligand (FasL). The C-terminal cleavage product blocks the induction of NF-kappaB by TNF and therefore functions as a dominant negative (DN) form of TRAF1. Our results suggest that the generation of DN-TRAF1 is part of a pro-apoptotic amplification system to assure rapid cell death.
Resumo:
A strategy to improve the immunogenicity of candidate vaccines is to trigger the innate immune system. Triggering of CD40 at the surface of dendritic cells (DC) is essential in the induction of an efficient immune response. Although CD40 agonist antibodies have been shown to be potent inducers of immune responses in experimental models, serious safety concerns have been raised for their use in humans. In addition, the production of soluble functional CD40 ligand has been challenging and the soluble form existing so far is not developed anymore. Here, we have evaluated the potency of a new soluble form of hexameric CD40 ligand (sCD40L) to serve as an adjuvant for anti-viral T cell responses. sCD40L was able to activate human DC and to enhance virus-specific memory T cell responses. These results demonstrate that this soluble form of CD40 ligand may serve as an adjuvant for T cell response and thus provide the rationale for its potential use in T cell based vaccine strategies.
Resumo:
To study the interaction of the TCR with its ligand, the complex of a MHC molecule and an antigenic peptide, we modified a TCR contact residue of a H-2Kd-restricted antigenic peptide with photoreactive 4-azidobenzoic acid. The photoreactive group was a critical component of the epitope recognized by CTL clones derived from mice immunized with such a peptide derivative. The majority of these clones expressed V beta 1-encoded beta chains that were paired with J alpha TA28-encoded alpha chains. For one of these TCR, the photoaffinity labeled sites were mapped on the alpha chain as a J alpha TA28-encoded tryptophan and on the beta chain as a residue of the C' strand of V beta 1. Molecular modeling of this TCR suggested the presence of a hydrophobic pocket that harbors this tryptophan as well as a tyrosine on the C' strand of V beta 1 between which the photoreactive side chain inserts. It is concluded that this avid binding principle may account for the preferential selection of V beta 1 and J alpha TA28-encoded TCR.
Resumo:
Fas ligand (FasL) exerts potent proapoptotic and proinflammatory actions on epidermal keratinocytes and has been implicated in the pathogenesis of eczema, toxic epidermal necrolysis, and drug-induced skin eruptions. We used reconstructed human epidermis to investigate the mechanisms of FasL-induced inflammatory responses and their relationships with FasL-triggered caspase activity. Caspase activity was a potent antagonist of the pro-inflammatory gene expression triggered by FasL prior to the onset of cell death. Furthermore, we found that FasL-stimulated autocrine production of epidermal growth factor receptor (EGFR) ligands, and the subsequent activation of EGFR and ERK1 and ERK2 mitogen-activated protein kinases, were obligatory extracellular steps for the FasL-induced expression of a subset of inflammatory mediators, including CXCL8/interleukin (IL)-8, ICAM-1, IL-1alpha, IL-1beta, CCL20/MIP-3alpha, and thymic stromal lymphopoietin. These results expand the known physiological role of EGFR and its ligands from promoting keratinocyte mitogenesis and survival to mediating FasL-induced epidermal inflammation.
Resumo:
Overexpression of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors, TRAIL-R1 and TRAIL-R2, induces apoptosis and activation of NF-kappaB in cultured cells. In this study, we have demonstrated differential signaling capacities by both receptors using either epitope-tagged soluble TRAIL (sTRAIL) or sTRAIL that was cross-linked with a monoclonal antibody. Interestingly, sTRAIL was sufficient for induction of apoptosis only in cell lines that were killed by agonistic TRAIL-R1- and TRAIL-R2-specific IgG preparations. Moreover, in these cell lines interleukin-6 secretion and NF-kappaB activation were induced by cross-linked or non-cross-linked anti-TRAIL, as well as by both receptor-specific IgGs. However, cross-linking of sTRAIL was required for induction of apoptosis in cell lines that only responded to the agonistic anti-TRAIL-R2-IgG. Interestingly, activation of c-Jun N-terminal kinase (JNK) was only observed in response to either cross-linked sTRAIL or anti-TRAIL-R2-IgG even in cell lines where both receptors were capable of signaling apoptosis and NF-kappaB activation. Taken together, our data suggest that TRAIL-R1 responds to either cross-linked or non-cross-linked sTRAIL which signals NF-kappaB activation and apoptosis, whereas TRAIL-R2 signals NF-kappaB activation, apoptosis, and JNK activation only in response to cross-linked TRAIL.
Resumo:
Certain receptors on natural killer (NK) cells, which are specific for MHC class I (MHC-I) molecules, do not only interact with ligand expressed on opposing cell membranes (in trans) but also interact with those on the same cell membrane (in cis). Cis interactions have been demonstrated for only a small number of cell surface receptors. However, this has not been tested systematically, raising the possibility that additional receptors may be able to bind ligand expressed in cis. Here we describe a number of approaches to evaluate trans and cis binding of the Ly49A NK cell receptor to its H-2D(d) ligand. These procedures should facilitate the investigation of cis/trans interactions of other receptor-ligand pairs and simplify the analysis of NK cell receptor variants.
Resumo:
Members of the tumor necrosis factor (TNF) family induce pleiotropic biological responses, including cell growth, differentiation, and even death. Here we describe a novel member of the TNF family designated APRIL (for a proliferation-inducing ligand). Although transcripts of APRIL are of low abundance in normal tissues, high levels of mRNA are detected in transformed cell lines, and in human cancers of colon, thyroid, and lymphoid tissues in vivo. The addition of recombinant APRIL to various tumor cells stimulates their proliferation. Moreover, APRIL-transfected NIH-3T3 cells show an increased rate of tumor growth in nude mice compared with the parental cell line. These findings suggest that APRIL may be implicated in the regulation of tumor cell growth.
Resumo:
Thymic T cell lineage commitment is dependent on Notch1 (N1) receptor-mediated signaling. Although the physiological ligands that interact with N1 expressed on thymic precursors are currently unknown, in vitro culture systems point to Delta-like 1 (DL1) and DL4 as prime candidates. Using DL1- and DL4-lacZ reporter knock-in mice and novel monoclonal antibodies to DL1 and DL4, we show that DL4 is expressed on thymic epithelial cells (TECs), whereas DL1 is not detected. The function of DL4 was further explored in vivo by generating mice in which DL4 could be specifically inactivated in TECs or in hematopoietic progenitors. Although loss of DL4 in hematopoietic progenitors did not perturb thymus development, inactivation of DL4 in TECs led to a complete block in T cell development coupled with the ectopic appearance of immature B cells in the thymus. These immature B cells were phenotypically indistinguishable from those developing in the thymus of conditional N1 mutant mice. Collectively, our results demonstrate that DL4 is the essential and nonredundant N1 ligand responsible for T cell lineage commitment. Moreover, they strongly suggest that N1-expressing thymic progenitors interact with DL4-expressing TECs to suppress B lineage potential and to induce the first steps of intrathymic T cell development.
Resumo:
Graft-versus-host disease (GVHD) is the main complication after allogeneic bone marrow transplantation. Although the tissue damage and subsequent patient mortality are clearly dependent on T lymphocytes present in the grafted inoculum, the lethal effector molecules are unknown. Here, we show that acute lethal GVHD, induced by the transfer of splenocytes from C57BL/6 mice into sensitive BALB/c recipients, is dependent on both perforin and Fas ligand (FasL)-mediated lytic pathways. When spleen cells from mutant mice lacking both effector molecules were transferred to sublethally irradiated allogeneic recipients, mice survived. Delayed mortality was observed with grafted cells deficient in only one lytic mediator. In contrast, protection from lethal acute GVHD in resistant mice was exclusively perforin dependent. Perforin-FasL-deficient T cells failed to lyse most target cells in vitro. However, they still efficiently killed tumor necrosis factor alpha-sensitive fibroblasts, demonstrating that cytotoxic T cells possess a third lytic pathway.
Resumo:
The SwissBioisostere database (http://www.swissbioisostere.ch) contains information on molecular replacements and their performance in biochemical assays. It is meant to provide researchers in drug discovery projects with ideas for bioisosteric modifications of their current lead molecule, as well as to give interested scientists access to the details on particular molecular replacements. As of August 2012, the database contains 21 293 355 datapoints corresponding to 5 586 462 unique replacements that have been measured in 35 039 assays against 1948 molecular targets representing 30 target classes. The accessible data were created through detection of matched molecular pairs and mining bioactivity data in the ChEMBL database. The SwissBioisostere database is hosted by the Swiss Institute of Bioinformatics and available via a web-based interface.
Resumo:
Members of the tumor necrosis factor (TNF) family induce pleiotropic biological responses, including cell growth, differentiation, and even death. Here we describe a novel member of the TNF family, designated BAFF (for B cell activating factor belonging to the TNF family), which is expressed by T cells and dendritic cells. Human BAFF was mapped to chromosome 13q32-34. Membrane-bound BAFF was processed and secreted through the action of a protease whose specificity matches that of the furin family of proprotein convertases. The expression of BAFF receptor appeared to be restricted to B cells. Both membrane-bound and soluble BAFF induced proliferation of anti-immunoglobulin M-stimulated peripheral blood B lymphocytes. Moreover, increased amounts of immunoglobulins were found in supernatants of germinal center-like B cells costimulated with BAFF. These results suggest that BAFF plays an important role as costimulator of B cell proliferation and function.