80 resultados para Heavy ion
Resumo:
Glucocorticoids reduce diabetic macular edema, but the mechanisms underlying glucocorticoid effects are imperfectly elucidated. Glucocorticoids may bind to glucocorticoid (GR) and mineralocorticoid (MR) receptors. We hypothesize that MR activation may influence retinal hydration. The effect of the MR agonist aldosterone (24 h) on ion/water channel expression (real-time PCR, Western blot, immunofluorescence) was investigated on cultured retinal Müller glial cells (RMGs, which contribute to fluid homeostasis in the retina), in Lewis rat retinal explants, and in retinas from aldosterone-injected eyes. We evidenced cell-specific expression of MR, GR, and 11-beta-hydroxysteroid dehydrogenase type II. Aldosterone significantly enhances expression of sodium and potassium channels ENaC-alpha (6.5-fold) and Kir4.1 (1.9-fold) through MR and GR occupancy, whereas aquaporin 4 (AQP4, 2.9-fold) up-regulation is MR-selective. Aldosterone intravitreous injection induces retinal swelling (24% increase compared to sham-injected eyes) and activation of RMGs. It promotes additional localization of Kir4.1 and AQP4 toward apical microvilli of RMGs. Our results highlight the mineralocorticoid-sensitivity of the neuroretina and show that aldosterone controls hydration of the healthy retina through regulation of ion/water channels expression in RMGs. These results provide a rationale for future investigations of abnormal MR signaling in the pathological retina.
Resumo:
SUMMARY Acid-sensing ion channels (ASICs) are non-voltage gated sodium channels. They are activated by rapid extracellular acidification and generate an inactivating inward current. Four ASIC genes have been cloned: ASIC1, 2, 3 and 4, with variants a and b for ASIC1and AS1C2. ASICs are expressed in neurons of the central (CNS) and peripheral nervous system (PNS). In the CNS, ASICs have a role in learning, memory, as well as in neuronal death in ischemia. In the PNS, ASICs are involved in the perception of acid-induced pain, as well as in mechanoperception. In one part of my thesis project, we addressed the question of the mechanism of regulation of ASIC1 a by the serine protease trypsin at the molecular level. Trypsin modifies the function of ASIC1 a but not of ASIC1b. In order to identify the channel region responsible for this effect, we created chimeras between ASIC1 a and 1b. Subsequently, to identify the exact trypsin target(s), we mutated predicted trypsin sites in the region identified by the chimera. In the second part of a project, we investigated the role of ASICs at the cellular level, in neuronal signaling. Using the whole-cell patch clamp in hippocampal neuronal culture, we studied the potential involvement of ASICs in action potential (AP) generation. In the first part of the thesis work, we showed that trypsin modifies ASIC1a function: it shifts the pH activation and the steady-state inactivation curve towards more acidic values and accelerates the time course of the channel recovery from inactivation. We also showed that trypsin cleaves ASIC1a and that the functional effect and a channel cleavage correlate. In the inactivated state, channels cannot be modified by trypsin. Cleavage occurs in a channel region that is also important for inactivation of all ASICs; a part of this region is critical for the inhibition of ASIC1 a by the spider toxin Psalmotoxin1. In the second part of the thesis work, we showed that ASIC activity can modulate AP generation. ASIC activity by itself can induce trains of APs. In situations in which this activity by itself is not sufficient to induce APs, it can contribute to AP generation. During high neuronal activity, ASIC activity can block already existing trains of APs. In conclusion, depending on the activity of neuron in a particular moment, ASICs can differently modulate AP generation; they can induce, facilitate or inhibit APs. We also showed that trypsin changes the capability of ASICs to modulate AP generation by shifting the pH dependence to more acidic values, which adapts channel gating to pH conditions which may occur in pathological conditions such as ischemia. Our finding that trypsin modifies ASIC1 a function identifies a novel pharmacological tool, and proposes a mechanism of ASIC1a regulation that may have a physiological importance. The identification of the exact site of trypsin action gives insight to the molecular mechanisms of ASIC regulation. This work proposes a role in modulation of AP generation for ASICs in the CNS. RESUME Les canaux ASIC sont les canaux ioniques activés par l'acidification rapide extracellulaire. Activés, ils génèrent un courant entrant qui inactive en présence de stimulus acide. Quatre gènes ASIC ont été clonés, ASIC1, 2, 3 et 4, avec les variants a et b pour ASIC1 et 2. Les ASICs sont exprimés dans les neurones du système nerveux central (SNC) et périphérique (SNP). Dans le SNC, les ASIC ont un rôle dans le mémoire, apprentissage et la mort neuronale dans t'ischémie. Dans le SNP, ils ont un rôle dans la perception de la douleur et méchanosensation. Dans une partie de mon projet de thèse, nous avons étudié les mécanismes de la régulation d'ASIC1a par la sérine-protéase trypsine au niveau moléculaire. La trypsine modifie la fonction d'ASIC1a et pas ASIC1b. Nous avons créé les chimères entre ASIC1 a et 1 b, afin d'identifier la région du canal responsable pour l'effet. Pour identifier le(s) site(s) exactes de l'action de la trypsine, nous avons muté les sites potentiels de la trypsine dans la région identifiée par les chimères. Dans la deuxième partie du projet, nous avons étudié le rôle des ASICs au niveau cellulaire. En utilisant la technique du patch clamp dans les cultures des neurones de l'hippocampe, nous avons étudié l'implication des ASICs dans la génération des potentiels d'action (PA). Nous avons montré que la trypsine agit sur le canal ASIC1a ; elle décale l'activation et « steady-state » inactivation vers les valeurs plus acides, et elle raccourcit le temps du « recovery » du canal. La trypsine coupe ASIC1a sur le résidu K145 et l'effet fonctionnel et la coupure corrèlent. Nous avons identifié la région du canal responsable pour l'inactivation de tous les ASICs ; une partie de cette région est responsable pour ['inhibition d'ASIC1 a par la Psalmotoxinel . Nous avons montré que les ASICs peuvent moduler la génération des PAs. L'activité des ASICs peut induire les trains des PAs. Quand l'activité des ASICs n'est pas suffisante pour induire le PA, elle peut contribuer à sa génération. Pendant l'activité neuronale forte, l'activité des ASICs peut bloquer les trains des PAs qui existent déjà. En conclusion, dépendant de l'activité neuronale, les ASICs peuvent moduler la génération des PAs différemment ; ils peuvent induire, faciliter ou inhiber les PAs. La trypsine change la capacité des ASICs de moduler les PAs. Après l'action de la trypsine, les ASICs peuvent moduler la génération des PAs dans les conditions légèrement acides, suivies par les fluctuations du pH acide, qui peuvent exister dans l'ischémie. Le fait que la trypsine agit sur ASIC1a définit l'outil pharmacologique et propose le mécanisme de la régulation d'ASICI a qui pourrait avoir l'importance physiologique. L'identification du site de l'action de la trypsine éclaircit les mécanismes moléculaires de la régulation des ASICs. Cette étude propose un rôle des ASICs dans la modulation de la génération des PAs. Résumé pour le public large Les neurones sont les cellules de système nerveux dont la fonction est la signalisation. Comme toutes les autres cellules, les neurones ont une membrane qui sépare l'intérieur du milieu extérieur. Cette membrane est imperméable pour des particules chargées (ions). Dans cette membrane existent les protéines spécifiques, « canaux », qui permettent le transport des ions d'un côté de la membrane à l'autre, comme réponse aux stimuli différents. Ce transport des ions à travers la membrane génère un courant, qu'on peut mesurer. Ce courant est la base de la communication entre les neurones, ou, ce qu'on appelle la signalisation neuronale. Quand ce courant est suffisamment grand, il permet la génération du potentiel d'action, qui est le message principal de communication neuronale. Les canaux ASIC (acid-sensing ion channel), que nous étudions dans le laboratoire, sont activés par les acides. Les acides sont relâchés dans beaucoup de situations dans le système nerveux. Les ASIC ont été découverts récemment (en 1996), et nous ne connaissons pas encore très bien toutes les fonctions de ces canaux. Nous savons qu'ils ont un rôle dans le mémoire, apprentissage, la sensation de la douleur et l'infarctus cérébral. Dans la première partie de ce projet de thèse, nous avons voulu mieux comprendre comment fonctionnent ces canaux. Pour faire ça, nous avons étudié la régulation des ASICs par une protéine, trypsine, qui coupe le canal ASIC. Nous avons étudié ou exactement la trypsine coupe le canal et quels effets ça produit sur la fonction du canal. Dans la deuxième partie du projet de thèse, nous avons voulu mieux connaître comment le canal fonctionne au niveau de la cellule, comment il interagit avec les autres canaux et si il a un rôle dans la génération des potentiels d'action. Nous avons pu montrer que la trypsine change la fonction du canal, ce qui lui permet de fonctionner différemment. Nous avons aussi déterminé ou exactement ta trypsine coupe le canal. Au niveau de la cellule, nous avons montré que les ASIC peuvent moduler la génération des potentiels d'action, étant, dépendant de l'activité du neurone, soit activateurs, soit inhibiteurs. La trypsine est une molécule qui peut être libérée dans le système nerveux pendant certaines conditions, comme l'infarctus cérébral. A cause de ça, les connaissances que la trypsine agit sur le anal ASIC pourraient être important physiologiquement. La connaissance de l'endroit exacte ou la trypsine coupe le canal nous aide à mieux comprendre la relation structure-fonction du canal. La modulation de la génération des potentiels d'actions par les ASIC indique que ces canaux peuvent avoir un rôle important dans la signalisation neuronale.
Resumo:
A novel monoclonal antibody, M7, is described, that reacts on Western blots with the large subunit of the neurofilament triplet proteins (NF-H) and with striated muscle myosin of Xenopus laevis. Enzymatically digested neurofilament and myosin proteins revealed different immunoreactive peptide fragments on Western blots. Therefore, the antibody must react with immunologically related epitopes common to both proteins. Immunohistochemistry showed staining of large and small axons in CNS and PNS, and nerves could be followed into endplate regions of skeletal muscles. These muscles were characterized by a striated immunostaining of the M-lines. Despite the crossreactivity of M7 with NF-H and muscle myosin, this antibody may be a tool to study innervation of muscle fibers, and to define changes in the neuromuscular organization during early development and metamorphosis of tadpoles.
Resumo:
Some forensic and clinical circumstances require knowledge of the frequency of drug use. Care of the patient, administrative, and legal consequences will be different if the subject is a regular or an occasional cannabis smoker. To this end, 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH) has been proposed as a criterion to help to distinguish between these two groups of users. However, to date this indicator has not been adequately assessed under experimental conditions. We carried out a controlled administration study of smoked cannabis with a placebo. Cannabinoid levels were determined in whole blood using tandem mass spectrometry. Significantly high differences in THCCOOH concentrations were found between the two groups when measured during the screening visit, prior to the smoking session, and throughout the day of the experiment. Receiver operating characteristic (ROC) curves were determined and two threshold criteria were proposed in order to distinguish between these groups: a free THCCOOH concentration below 3 µg/L suggested an occasional consumption (≤ 1 joint/week) while a concentration higher than 40 µg/L corresponded to a heavy use (≥ 10 joints/month). These thresholds were tested and found to be consistent with previously published experimental data. The decision threshold of 40 µg/L could be a cut-off for possible disqualification for driving while under the influence of cannabis. A further medical assessment and follow-up would be necessary for the reissuing of a driving license once abstinence from cannabis has been demonstrated. A THCCOOH level below 3 µg/L would indicate that no medical assessment is required. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal Na(+) channels that belong to the epithelial Na(+) channel/degenerin family. ASICs are transiently activated by a rapid drop in extracellular pH. Conditions of low extracellular pH, such as ischemia and inflammation in which ASICs are thought to be active, are accompanied by increased protease activity. We show here that serine proteases modulate the function of ASIC1a and ASIC1b but not of ASIC2a and ASIC3. We show that protease exposure shifts the pH dependence of ASIC1a activation and steady-state inactivation to more acidic pH. As a consequence, protease exposure leads to a decrease in current response if ASIC1a is activated by a pH drop from pH 7.4. If, however, acidification occurs from a basal pH of approximately 7, protease-exposed ASIC1a shows higher activity than untreated ASIC1a. We provide evidence that this bi-directional regulation of ASIC1a function also occurs in neurons. Thus, we have identified a mechanism that modulates ASIC function and may allow ASIC1a to adapt its gating to situations of persistent extracellular acidification.
Resumo:
The effects of estrogens and gestagens on veins and circulation have been studied since prescription of these hormones as oral contraception and description of related thromboembolic events. The identification of different receptors and the description of these receptors in venous walls have helped to understand some hormonal effects. However, the actual knowledge remains insufficient to explain the complexity of the actions of hormones on venous function. The distribution, the density and the receptor types vary with age, gender, hormonal status and vascular bed. Gestagens mainly reduce the tone of venous walls, whereas estrogens have various effects. Between 25% and 50% of European adults and even 80% or more in some risk groups complain about heavy legs, with or without chronic venous insufficiency. The number of women to whom hormonal substitution is or could be prescribed increases along with aging of populations and the better understanding of potential benefits. The need for a better understanding of vascular effects of sexual hormones is growing, since the incidence of chronic venous insufficiency of the legs increases with age. The life prognosis will not be affected by a deterioration of a chronic venous insufficiency. In contrast, the quality of life, morbidity and the cost of treatment will be expected to change. In addition, thromboembolic events have to be considered, as has been shown in recent studies. These findings outline the need for further studies on the relation between hormones and venous function and for some caution when prescribing hormonal substitution.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal Na(+)-selective channels that are transiently activated by extracellular acidification. ASICs are involved in fear and anxiety, learning, neurodegeneration after ischemic stroke, and pain sensation. The small molecule 2-guanidine-4-methylquinazoline (GMQ) was recently shown to open ASIC3 at physiological pH. We have investigated the mechanisms underlying this effect and the possibility that GMQ may alter the function of other ASICs besides ASIC3. GMQ shifts the pH dependence of activation to more acidic pH in ASIC1a and ASIC1b, whereas in ASIC3 this shift goes in the opposite direction and is accompanied by a decrease in its steepness. GMQ also induces an acidic shift of the pH dependence of inactivation of ASIC1a, -1b, -2a, and -3. As a consequence, the activation and inactivation curves of ASIC3 but not other ASICs overlap in the presence of GMQ at pH 7.4, thereby creating a window current. At concentrations >1 mm, GMQ decreases maximal peak currents by reducing the unitary current amplitude. Mutation of residue Glu-79 in the palm domain of ASIC3, previously shown to be critical for channel opening by GMQ, disrupted the GMQ effects on inactivation but not activation. This suggests that this residue is involved in the consequences of GMQ binding rather than in the binding interaction itself. This study describes the mechanisms underlying the effects of a novel class of ligands that modulate the function of all ASICs as well as activate ASIC3 at physiological pH.
Resumo:
Purpose: After tobacco and alcohol, cannabis is the most used substance among adolescents in Switzerland. Our aim is to assess whether cannabis use has become an ordinary means of socialization. We hypothesize that cannabis consumption has become a normative, although still illegal, behavior. Methods: As part of a larger qualitative study aimed at assessing new ways [patterns] of cannabis consumption, 16 daily cannabis consumers (11 males) and 2 former heavy consumers (both females), aged 15 to 20 years, participated in interviews and focus groups. Data were transcribed verbatim and analyzed using Atlas.ti qualitative analysis software. Results: Most consumers define the beginning of their consumption as a moment when they made new friends. They commonly use cannabis in group settings, which encourages the belief that all adolescents use cannabis. Thus, cannabis is mainly identified as an everyday social act. Joints are smoked like cigarettes: at all times of the day, during or after school or work with peers, often starting at lunch break, and mostly in public places. Friends offer a joint in a group setting, much like beer in a bar, as a means of making contact. Consumption invariably increases while socializing on vacation: "During vacation, we smoke up to 10-15 joints a day; at the end we're just dead." Additionally, in order to obtain cannabis, consumers have to be part of the right networks; they generally have several dealers to assure their supply, buy and sell themselves, or practice group-buying. As a result, all friends or acquaintances of consumers are themselves cannabis users. For instance, 4 boys, who say they are best friends, always smoke together and that, in order to quit, "All four of us should say to ourselves, 'Okay, now, let's all stop smoking'. That would be the only solution. . .but it would be impossible!" The 2 former consumers state that when they started using cannabis, "I found myself little by little in a vicious circle where I saw only people who also smoked". When they quit, they separated from their group of friends: "Either you make new friends who don't smoke or you smoke." Conclusions: Discussions with consumers demonstrate a normative facet of cannabis consumption as part of teenage socialization. Consequently, cannabis consumers develop a significant dependency since a majority of their friends use cannabis and their consumption involves most of their daily social life. Our study highlights the need for clear messages about the harmful aspects of using this substance while also suggesting that cessation efforts should include helping users separate from their consumption milieu. Sources of Support: Dept. of Public Health of the canton of Vaud.
Resumo:
Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.
Resumo:
The annual meeting of the French Ion Channels Society, held on the Mediterranean coast of France, is aimed at gathering the international scientific community working on various aspects of ion channels. In this report of the 19th edition of the meeting, held in September 2008, we summarize selected symposia on aspects of the ion channel field from fundamental to clinical research. The meeting is an opportunity for leading investigators as well as young researchers to present and discuss their recent advances and future challenges in the ion channel field.
Resumo:
This study aimed to characterise both the [Formula: see text] kinetics within constant heavy-intensity swimming exercise, and to assess the relationships between [Formula: see text] kinetics and other parameters of aerobic fitness, in well-trained swimmers. On separate days, 21 male swimmers completed: (1) an incremental swimming test to determine their maximal oxygen uptake [Formula: see text], first ventilatory threshold (VT), and the velocity associated with [Formula: see text] [Formula: see text] and (2) two square-wave transitions from rest to heavy-intensity exercise, to determine their [Formula: see text] kinetics. All the tests involved breath-by-breath analysis of freestyle swimming using a swimming snorkel. [Formula: see text] kinetics was modelled with two exponential functions. The mean values for the incremental test were 56.0 ± 6.0 ml min(-1) kg(-1), 1.45 ± 0.08 m s(-1); and 42.1 ± 5.7 ml min(-1) kg(-1) for [Formula: see text], [Formula: see text] and VT, respectively. For the square-wave transition, the time constant of the primary phase (τ(p)) averaged 17.3 ± 5.4 s and the relevant slow component (A'(sc)) averaged 4.8 ± 2.9 ml min(-1) kg(-1) [representing 8.9% of the end-exercise [Formula: see text] (%A'(sc))]. τ(p) was correlated with [Formula: see text] (r = -0.55, P = 0.01), but not with either [Formula: see text] (r = 0.05, ns) or VT (r = 0.14, ns). The %A'(sc) did not correlate with either [Formula: see text] (r = -0.14, ns) or [Formula: see text] (r = 0.06, ns), but was inversely related with VT (r = -0.61, P < 0.01). This study was the first to describe the [Formula: see text] kinetics in heavy-intensity swimming using specific swimming exercise and appropriate methods. As has been demonstrated in cycling, faster [Formula: see text] kinetics allow higher aerobic power outputs to be attained. The slow component seems to be reduced in swimmers with higher ventilatory thresholds.
Resumo:
Since the end of the last millennium, the focused ion beam scanning electron microscopy (FIB-SEM) has progressively found use in biological research. This instrument is a scanning electron microscope (SEM) with an attached gallium ion column and the 2 beams, electrons and ions (FIB) are focused on one coincident point. The main application is the acquisition of three-dimensional data, FIB-SEM tomography. With the ion beam, some nanometres of the surface are removed and the remaining block-face is imaged with the electron beam in a repetitive manner. The instrument can also be used to cut open biological structures to get access to internal structures or to prepare thin lamella for imaging by (cryo-) transmission electron microscopy. Here, we will present an overview of the development of FIB-SEM and discuss a few points about sample preparation and imaging.