23 resultados para HTLV-1 phylogeny


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: To monitor HIV-1 transmitted drug resistance (TDR) in a well defined urban area with large access to antiretroviral therapy and to assess the potential source of infection of newly diagnosed HIV individuals. METHODS: All individuals resident in Geneva, Switzerland, with a newly diagnosed HIV infection between 2000 and 2008 were screened for HIV resistance. An infection was considered as recent when the positive test followed a negative screening test within less than 1 year. Phylogenetic analyses were performed by using the maximum likelihood method on pol sequences including 1058 individuals with chronic infection living in Geneva. RESULTS: Of 637 individuals with newly diagnosed HIV infection, 20% had a recent infection. Mutations associated with resistance to at least one drug class were detected in 8.5% [nucleoside reverse transcriptase inhibitors (NRTIs), 6.3%; non-nucleoside reverse transcriptase inhibitors (NNRTIs), 3.5%; protease inhibitors, 1.9%]. TDR (P-trend = 0.015) and, in particular, NNRTI resistance (P = 0.002) increased from 2000 to 2008. Phylogenetic analyses revealed that 34.9% of newly diagnosed individuals, and 52.7% of those with recent infection were linked to transmission clusters. Clusters were more frequent in individuals with TDR than in those with sensitive strains (59.3 vs. 32.6%, respectively; P < 0.0001). Moreover, 84% of newly diagnosed individuals with TDR were part of clusters composed of only newly diagnosed individuals. CONCLUSION: Reconstruction of the HIV transmission networks using phylogenetic analysis shows that newly diagnosed HIV infections are a significant source of onward transmission, particularly of resistant strains, thus suggesting an important self-fueling mechanism for TDR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Human immunodeficiency virus type 1 (HIV-1) transmitted drug resistance (TDR) can compromise antiretroviral therapy (ART) and thus represents an important public health concern. Typically, sources of TDR remain unknown, but they can be characterized with molecular epidemiologic approaches. We used the highly representative Swiss HIV Cohort Study (SHCS) and linked drug resistance database (SHCS-DRDB) to analyze sources of TDR. Methods. ART-naive men who have sex with men with infection date estimates between 1996 and 2009 were chosen for surveillance of TDR in HIV-1 subtype B (N = 1674), as the SHCS-DRDB contains pre-ART genotypic resistance tests for >69% of this surveillance population. A phylogeny was inferred using pol sequences from surveillance patients and all subtype B sequences from the SHCS-DRDB (6934 additional patients). Potential sources of TDR were identified based on phylogenetic clustering, shared resistance mutations, genetic distance, and estimated infection dates. Results. One hundred forty of 1674 (8.4%) surveillance patients carried virus with TDR; 86 of 140 (61.4%) were assigned to clusters. Potential sources of TDR were found for 50 of 86 (58.1%) of these patients. ART-naive patients constitute 56 of 66 (84.8%) potential sources and were significantly overrepresented among sources (odds ratio, 6.43 [95% confidence interval, 3.22-12.82]; P < .001). Particularly large transmission clusters were observed for the L90M mutation, and the spread of L90M continued even after the near cessation of antiretroviral use selecting for that mutation. Three clusters showed evidence of reversion of K103N or T215Y/F. Conclusions. Many individuals harboring viral TDR belonged to transmission clusters with other Swiss patients, indicating substantial domestic transmission of TDR in Switzerland. Most TDR in clusters could be linked to sources, indicating good surveillance of TDR in the SHCS-DRDB. Most TDR sources were ART naive. This, and the presence of long TDR transmission chains, suggests that resistance mutations are frequently transmitted among untreated individuals, highlighting the importance of early diagnosis and treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The majority of Haemosporida species infect birds or reptiles, but many important genera, including Plasmodium, infect mammals. Dipteran vectors shared by avian, reptilian and mammalian Haemosporida, suggest multiple invasions of Mammalia during haemosporidian evolution; yet, phylogenetic analyses have detected only a single invasion event. Until now, several important mammal-infecting genera have been absent in these analyses. This study focuses on the evolutionary origin of Polychromophilus, a unique malaria genus that only infects bats (Microchiroptera) and is transmitted by bat flies (Nycteribiidae). METHODS: Two species of Polychromophilus were obtained from wild bats caught in Switzerland. These were molecularly characterized using four genes (asl, clpc, coI, cytb) from the three different genomes (nucleus, apicoplast, mitochondrion). These data were then combined with data of 60 taxa of Haemosporida available in GenBank. Bayesian inference, maximum likelihood and a range of rooting methods were used to test specific hypotheses concerning the phylogenetic relationships between Polychromophilus and the other haemosporidian genera. RESULTS: The Polychromophilus melanipherus and Polychromophilus murinus samples show genetically distinct patterns and group according to species. The Bayesian tree topology suggests that the monophyletic clade of Polychromophilus falls within the avian/saurian clade of Plasmodium and directed hypothesis testing confirms the Plasmodium origin. CONCLUSION: Polychromophilus' ancestor was most likely a bird- or reptile-infecting Plasmodium before it switched to bats. The invasion of mammals as hosts has, therefore, not been a unique event in the evolutionary history of Haemosporida, despite the suspected costs of adapting to a new host. This was, moreover, accompanied by a switch in dipteran host.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A haplotype is an m-long binary vector. The XOR-genotype of two haplotypes is the m-vector of their coordinate-wise XOR. We study the following problem: Given a set of XOR-genotypes, reconstruct their haplotypes so that the set of resulting haplotypes can be mapped onto a perfect phylogeny (PP) tree. The question is motivated by studying population evolution in human genetics, and is a variant of the perfect phylogeny haplotyping problem that has received intensive attention recently. Unlike the latter problem, in which the input is "full" genotypes, here we assume less informative input, and so may be more economical to obtain experimentally. Building on ideas of Gusfield, we show how to solve the problem in polynomial time, by a reduction to the graph realization problem. The actual haplotypes are not uniquely determined by that tree they map onto, and the tree itself may or may not be unique. We show that tree uniqueness implies uniquely determined haplotypes, up to inherent degrees of freedom, and give a sufficient condition for the uniqueness. To actually determine the haplotypes given the tree, additional information is necessary. We show that two or three full genotypes suffice to reconstruct all the haplotypes, and present a linear algorithm for identifying those genotypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A haplotype is an m-long binary vector. The XOR-genotype of two haplotypes is the m-vector of their coordinate-wise XOR. We study the following problem: Given a set of XOR-genotypes, reconstruct their haplotypes so that the set of resulting haplotypes can be mapped onto a perfect phylogeny (PP) tree. The question is motivated by studying population evolution in human genetics and is a variant of the PP haplotyping problem that has received intensive attention recently. Unlike the latter problem, in which the input is '' full '' genotypes, here, we assume less informative input and so may be more economical to obtain experimentally. Building on ideas of Gusfield, we show how to solve the problem in polynomial time by a reduction to the graph realization problem. The actual haplotypes are not uniquely determined by the tree they map onto and the tree itself may or may not be unique. We show that tree uniqueness implies uniquely determined haplotypes, up to inherent degrees of freedom, and give a sufficient condition for the uniqueness. To actually determine the haplotypes given the tree, additional information is necessary. We show that two or three full genotypes suffice to reconstruct all the haplotypes and present a linear algorithm for identifying those genotypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: HCV coinfection remains a major cause of morbidity and mortality among HIV-infected individuals and its incidence has increased dramatically in HIV-infected men who have sex with men(MSM). METHODS: Hepatitis C virus (HCV) coinfection in the Swiss HIV Cohort Study(SHCS) was studied by combining clinical data with HIV-1 pol-sequences from the SHCS Drug Resistance Database(DRDB). We inferred maximum-likelihood phylogenetic trees, determined Swiss HIV-transmission pairs as monophyletic patient pairs, and then considered the distribution of HCV on those pairs. RESULTS: Among the 9748 patients in the SHCS-DRDB with known HCV status, 2768(28%) were HCV-positive. Focusing on subtype B(7644 patients), we identified 1555 potential HIV-1 transmission pairs. There, we found that, even after controlling for transmission group, calendar year, age and sex, the odds for an HCV coinfection were increased by an odds ratio (OR) of 3.2 [95% confidence interval (CI) 2.2, 4.7) if a patient clustered with another HCV-positive case. This strong association persisted if transmission groups of intravenous drug users (IDUs), MSMs and heterosexuals (HETs) were considered separately(in all cases OR>2). Finally we found that HCV incidence was increased by a hazard ratio of 2.1 (1.1, 3.8) for individuals paired with an HCV-positive partner. CONCLUSIONS: Patients whose HIV virus is closely related to the HIV virus of HIV/HCV-coinfected patients have a higher risk for carrying or acquiring HCV themselves. This indicates the occurrence of domestic and sexual HCV transmission and allows the identification of patients with a high HCV-infection risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Reducing the fraction of transmissions during recent human immunodeficiency virus (HIV) infection is essential for the population-level success of "treatment as prevention". METHODS: A phylogenetic tree was constructed with 19 604 Swiss sequences and 90 994 non-Swiss background sequences. Swiss transmission pairs were identified using 104 combinations of genetic distance (1%-2.5%) and bootstrap (50%-100%) thresholds, to examine the effect of those criteria. Monophyletic pairs were classified as recent or chronic transmission based on the time interval between estimated seroconversion dates. Logistic regression with adjustment for clinical and demographic characteristics was used to identify risk factors associated with transmission during recent or chronic infection. FINDINGS: Seroconversion dates were estimated for 4079 patients on the phylogeny, and comprised between 71 (distance, 1%; bootstrap, 100%) to 378 transmission pairs (distance, 2.5%; bootstrap, 50%). We found that 43.7% (range, 41%-56%) of the transmissions occurred during the first year of infection. Stricter phylogenetic definition of transmission pairs was associated with higher recent-phase transmission fraction. Chronic-phase viral load area under the curve (adjusted odds ratio, 3; 95% confidence interval, 1.64-5.48) and time to antiretroviral therapy (ART) start (adjusted odds ratio 1.4/y; 1.11-1.77) were associated with chronic-phase transmission as opposed to recent transmission. Importantly, at least 14% of the chronic-phase transmission events occurred after the transmitter had interrupted ART. CONCLUSIONS: We demonstrate a high fraction of transmission during recent HIV infection but also chronic transmissions after interruption of ART in Switzerland. Both represent key issues for treatment as prevention and underline the importance of early diagnosis and of early and continuous treatment.