18 resultados para HIGH-GAIN


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of energy gap(s) is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity) is not constant, may fade out with time if the initial conditions are maintained, and depends on the 'efficiency' with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s) can be estimated by at least two methods, i.e. i) assessment by longitudinal overfeeding studies, imposing (by design) an initial positive energy imbalance gap; ii) retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability) and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population) and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both) is clouded by a high level of uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: HOX genes are a family of developmental genes that are expressed neither in the developing forebrain nor in the normal brain. Aberrant expression of a HOX-gene dominated stem-cell signature in glioblastoma has been linked with increased resistance to chemo-radiotherapy and sustained proliferation of glioma initiating cells. Here we describe the epigenetic and genetic alterations and their interactions associated with the expression of this signature in glioblastoma. RESULTS: We observe prominent hypermethylation of the HOXA locus 7p15.2 in glioblastoma in contrast to non-tumoral brain. Hypermethylation is associated with a gain of chromosome 7, a hallmark of glioblastoma, and may compensate for tumor-driven enhanced gene dosage as a rescue mechanism by preventing undue gene expression. We identify the CpG island of the HOXA10 alternative promoter that appears to escape hypermethylation in the HOX-high glioblastoma. An additive effect of gene copy gain at 7p15.2 and DNA methylation at key regulatory CpGs in HOXA10 is significantly associated with HOX-signature expression. Additionally, we show concordance between methylation status and presence of active or inactive chromatin marks in glioblastoma-derived spheres that are HOX-high or HOX-low, respectively. CONCLUSIONS: Based on these findings, we propose co-evolution and interaction between gene copy gain, associated with a gain of chromosome 7, and additional epigenetic alterations as key mechanisms triggering a coordinated, but inappropriate, HOX transcriptional program in glioblastoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Body mass index (BMI) may cluster in space among adults and be spatially dependent. Whether and how BMI clusters evolve over time in a population is currently unknown. We aimed to determine the spatial dependence of BMI and its 5-year evolution in a Swiss general adult urban population, taking into account the neighbourhood-level and individual-level characteristics. DESIGN: Cohort study. SETTING: Swiss general urban population. PARTICIPANTS: 6481 georeferenced individuals from the CoLaus cohort at baseline (age range 35-74 years, period=2003-2006) and 4460 at follow-up (period=2009-2012). OUTCOME MEASURES: Body weight and height were measured by trained healthcare professionals with participants standing without shoes in light indoor clothing. BMI was calculated as weight (kg) divided by height squared (m(2)). Participants were geocoded using their postal address (geographic coordinates of the place of residence). Getis-Ord Gi statistic was used to measure the spatial dependence of BMI values at baseline and its evolution at follow-up. RESULTS: BMI was not randomly distributed across the city. At baseline and at follow-up, significant clusters of high versus low BMIs were identified and remained stable during the two periods. These clusters were meaningfully attenuated after adjustment for neighbourhood-level income but not individual-level characteristics. Similar results were observed among participants who showed a significant weight gain. CONCLUSIONS: To the best of our knowledge, this is the first study to report longitudinal changes in BMI clusters in adults from a general population. Spatial clusters of high BMI persisted over a 5-year period and were mainly influenced by neighbourhood-level income.