80 resultados para HEAT-FLUX


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Sulfate and phosphate are both vital macronutrients required for plant growth and development. Despite evidence for interaction between sulfate and phosphate homeostasis, no transcriptional factor has yet been identified in higher plants that affects, at the gene expression and physiological levels, the response to both elements. This work was aimed at examining whether PHR1, a transcription factor previously shown to participate in the regulation of genes involved in phosphate homeostasis, also contributed to the regulation and activity of genes involved in sulfate inter-organ transport. Results: Among the genes implicated in sulfate transport in Arabidopsis thaliana, SULTR1;3 and SULTR3;4 showed up-regulation of transcripts in plants grown under phosphate-deficient conditions. The promoter of SULTR1;3 contains a motif that is potentially recognizable by PHR1. Using the phr1 mutant, we showed that SULTR1;3 up regulation following phosphate deficiency was dependent on PHR1. Furthermore, transcript up regulation was found in phosphate-deficient shoots of the phr1 mutant for SULTR2;1 and SULTR3;4, indicating that PHR1 played both a positive and negative role on the expression of genes encoding sulfate transporters. Importantly, both phr1 and sultr1;3 mutants displayed a reduction in their sulfate shoot-to-root transfer capacity compared to wild-type plants under phosphate-deficient conditions. Conclusions: This study reveals that PHR1 plays an important role in sulfate inter-organ transport, in particular on the regulation of the SULTR1;3 gene and its impact on shoot-to-root sulfate transport in phosphate-deficient plants. PHR1 thus contributes to the homeostasis of both sulfate and phosphate in plants under phosphate deficiency. Such a function is also conserved in Chlamydomonas reinhardtii via the PHR1 ortholog PSR1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molar heat capacities at constant pressure of six solid solutions and 11 intermediate phases in the Pd-Pb, Pd-Sn and Pd-In systems were determined each 10 K by differential scanning calorimetry from 310 to 1000 K, The experimental values have been fitted by polynomials C-p = a + bT + cT(2) + d/T-2. Results are given, discussed and compared with available literature data. (C) 2001 Elsevier Science B.V, AII rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using both conventional and confocal laser scanning microscopy with three monoclonal antibodies recognizing nuclear matrix proteins we have investigated by means of indirect fluorescence whether an incubation of isolated nuclei at the physiological temperature of 37 degrees C induces a redistribution of nuclear components in human K562 erythroleukemia cells. Upon incubation of isolated nuclei for 45 min at 37 degrees C, we have found that two of the antibodies, directed against proteins of the inner matrix network (M(r) 125 and 160 kDa), gave a fluorescent pattern different from that observed in permeabilized cells. By contrast, the fluorescent pattern did not change if nuclei were kept at 0 degrees C. The difference was more marked in case of the 160-kDa polypeptide. The fluorescent pattern detected by the third antibody, which recognizes the 180-kDa nucleolar isoform of DNA topoisomerase II, was unaffected by heat exposure of isolated nuclei. When isolated nuclear matrices prepared from heat-stabilized nuclei were stained by means of the same three antibodies, it was possible to see that the distribution of the 160-kDa matrix protein no longer corresponded to that observable in permeabilized cells, whereas the fluorescent pattern given by the antibody to the 125-kDa polypeptide resembled that detectable in permeabilized cells. The 180-kDa isoform of topoisomerase II was still present in the matrix nucleolar remnants. We conclude that a 37 degrees C incubation of isolated nuclei induces a redistribution of some nuclear matrix antigens and cannot prevent the rearrangement in the spatial organization of one of these antigens that takes place during matrix isolation in human erythroleukemia cells. The practical relevance of these findings is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Acute respiratory distress syndrome is a common and highly lethal inflammatory lung syndrome. We previously have shown that an adenoviral vector expressing the heat shock protein (Hsp)70 (AdHSP) protects against experimental sepsis-induced acute respiratory distress syndrome in part by limiting neutrophil accumulation in the lung. Neutrophil accumulation and activation is modulated, in part, by the nuclear factor-kappaB (NF-kappaB) signal transduction pathway. NF-kappaB activation requires dissociation/degradation of a bound inhibitor, IkappaBalpha. IkappaBalpha degradation requires phosphorylation by IkappaB kinase, ubiquitination by the SCFbeta-TrCP (Skp1/Cullin1/Fbox beta-transducing repeat-containing protein) ubiquitin ligase, and degradation by the 26S proteasome. We tested the hypothesis that Hsp70 attenuates NF-kappaB activation at multiple points in the IkappaBalpha degradative pathway. DESIGN: Laboratory investigation. SETTING: University medical center research laboratory. SUBJECTS: Adolescent (200 g) Sprague-Dawley rats and murine lung epithelial-12 cells in culture. INTERVENTIONS: Lung injury was induced in rats via cecal ligation and double puncture. Thereafter, animals were treated with intratracheal injection of 1) phosphate buffer saline, 2) AdHSP, or 3) an adenovirus expressing green fluorescent protein. Murine lung epithelial-12 cells were stimulated with tumor necrosis factor-alpha and transfected. NF-kappaB was examined using molecular biological tools. MEASUREMENTS AND MAIN RESULTS: Intratracheal administration of AdHSP to rats with cecal ligation and double puncture limited nuclear translocation of NF-kappaB and attenuated phosphorylation of IkappaBalpha. AdHSP treatment reduced, but did not eliminate, phosphorylation of the beta-subunit of IkappaB kinase. In vitro kinase activity assays and gel filtration chromatography revealed that treatment of sepsis-induced lung injury with AdHSP induced fragmentation of the IkappaB kinase signalosome. This stabilized intermediary complexes containing IkappaB kinase components, IkappaBalpha, and NF-kappaB. Cellular studies indicate that although ubiquitination of IkappaBalpha was maintained, proteasomal degradation was impaired by an indirect mechanism. CONCLUSIONS: Treatment of sepsis-induced lung injury with AdHSP limits NF-kappaB activation. This results from stabilization of intermediary NF-kappaB/IkappaBalpha/IkappaB kinase complexes in a way that impairs proteasomal degradation of IkappaBalpha. This novel mechanism by which Hsp70 attenuates an intracellular process may be of therapeutic value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cette thèse a pour but de caractériser les microparticules isolées à partir des concentrés érythrocytaires et plus précisément de déterminer la présence d'antigènes de groupes sanguins à leur surface. Elle est divisée en trois parties, sous forme d'articles publiés à partir d'un travail de recherche mené au Centre de Transfusion Sanguine d'Epalinges. Dans l'article « Microparticles in stored red blood cells : an approach using flow cytometry and proteomic tools » publié dans Vox Sanguinis en 2008, il est question de la lésion de stockage des globules rouges. Grâce à des techniques alliant la cytométrie de flux et la protéomique, il a été montré que la génération de microparticules augmente au cours du stockage des concentrés érythrocytaires et que leur composition se modifie au cours du temps. L'article de revue « Analysis and clinical relevance of microparticles from red blood cells » publié dans Current Opinion in Hematology en 2010, explique les mécanismes de formation et d'élimination des microparticules de globules rouges. Il fait une revue des implications cliniques liées à la génération de microparticules et discute leur conséquences potentielles dans le domaine de la médecine transfusionnelle. L'article « Red blood cell microparticles and blood group antigens : an analysis by flow cytometry » publié dans Blood Transfusion en 2012, décrit l'étude des antigènes de groupe sanguins à la surface des microparticules générées à partir de concentrés érythrocytaires après ajout de calcium ionophore. Les résultats de cette étude indiquent que les antigènes de groupes sanguins appartenant aux systèmes RH, KEL, JK, FY, MNS, LE et LU sont présents à la surface des microparticules. Ces antigènes pourraient potentiellement être source d'allo-immunisation après transfusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzyme glutamate dehydrogenase (GDH) is important for recycling the chief excitatory neurotransmitter, glutamate, during neurotransmission. Human GDH exists in housekeeping and brain-specific isotypes encoded by the genes GLUD1 and GLUD2, respectively. Here we show that GLUD2 originated by retroposition from GLUD1 in the hominoid ancestor less than 23 million years ago. The amino acid changes responsible for the unique brain-specific properties of the enzyme derived from GLUD2 occurred during a period of positive selection after the duplication event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through significant developments and progresses in the last two decades, in vivo localized nuclear magnetic resonance spectroscopy (MRS) became a method of choice to probe brain metabolic pathways in a non-invasive way. Beside the measurement of the total concentration of more than 20 metabolites, (1)H MRS can be used to quantify the dynamics of substrate transport across the blood-brain barrier by varying the plasma substrate level. On the other hand, (13)C MRS with the infusion of (13)C-enriched substrates enables the characterization of brain oxidative metabolism and neurotransmission by incorporation of (13)C in the different carbon positions of amino acid neurotransmitters. The quantitative determination of the biochemical reactions involved in these processes requires the use of appropriate metabolic models, whose level of details is strongly related to the amount of data accessible with in vivo MRS. In the present work, we present the different steps involved in the elaboration of a mathematical model of a given brain metabolic process and its application to the experimental data in order to extract quantitative brain metabolic rates. We review the recent advances in the localized measurement of brain glucose transport and compartmentalized brain energy metabolism, and how these reveal mechanistic details on glial support to glutamatergic and GABAergic neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Il a été démontré que l'exercice physique modifiait le contrôle de la thermorégulation cutané, ce qui se manifeste par une augmentation de la perfusion de la microcirculation de la peau. Pour une même augmentation de température, ce phénomène est plus important chez les sportifs d'endurance que chez les sujets sédentaires. Dans cette étude, nous posons l'hypothèse qu'une composante de cette adaptation peut provenir d'une plus haute capacité des vaisseaux sanguins à répondre à un stimulus vasodilatateur. Pour la tester, nous avons recruté des hommes sains, non fumeurs, soit entraînés (surtout sport d'endurance) ou sédentaires que nous avons partagé en deux classes d'âges (18-35 ans [jeunes] et >50 ans[âgés]). Le flux sanguin cutané était mesuré par un laser-Doppler au niveau de la peau de l'avant-bras. Nous avons alors mesuré la vasodilatation obtenue par les stimuli suivant : Iontophorèse à l'acétylcholine (ACh, un vasodilatateur dépendant de l'endothélium), iontophorèse au nitroprussiate de sodium (SNP, un donneur d'oxyde nitrique) et par libération d'une interruption momentanée du flux artériel huméral (hyperémie réactive). Chez les sujets entraînés, l'effet de l'hyperémie réactive et de l'ACh n'ont pas montré de différence. Par contre, l'augmentation de la perfusion, suivant la iontophorèse de SNP, exprimé en unité de perfusion (PU), était plus importante chez les sujets entraînés que chez les sujets sédentaires (jeunes: 398±54 vs 350±87, p<0.05; âgés: 339±72 vs 307±66, p<0.05). Pour conclure, l'entraînement d'endurance augmente l'effet vasodilatateur de l'oxyde nitrique de la microcirculation cutanée humaine, au moins au niveau de la peau de l'avant-bras. Ces observations ont un intérêt physiologique considérable au vu des résultats d'études récentes qui montrent que le NO sert d'intermédiaire dans la vasodilatation cutanée produite par un stress thermique. Donc, l'augmentation de la bioactivité du NO dans la microcirculation cutanée pourrait être un des mécanismes par lequel l'entraînement physique modifierait le contrôle de la thermorégulation du flux sanguin cutané. Abstract Endurance training modifies the thermoregulatory control of skin blood flow, as manifested by a greater augmentation of skin perfusion for the same increase in core temperature in athletes, in comparison with se-dentary subjects. In this study, we tested the hypothesis that a component of this adaptation might reside in a higher ability of cutaneous blood vessels to respond to vasodilatory stimuli. We recruited healthy nonsmoking males, either endurance trained or sedentary, in two different age ranges (18-35 y and >50 y). Skin blood flow was measured in the forearm skin, using a laser Doppler imager, allowing to record the vasodilatory responses to the following stimuli: iontophoresis of acetylcholine (an endothelium-dependent vasodilator), iontophoresis of sodium nitroprusside (a nitric oxide donor), and release of a temporary interruption of arterial inflow (reactive hyperemia). There was no effect of training on reactive hyperemia or the response to acetylcholine. In contrast, the increase in perfusion following the iontophoresis of sodium nitroprusside, ex-pressed in perfusion units, was larger in trained than in sedentary subjects (younger: 398±54 vs 350±87, p<0.05; older 339±72 vs 307±66, p<0.05). In conclusion, endurance training enhances the vasodilatory effects of nitric oxide in the human dermal microcirculation, at least in forearm skin. These observations have considerable physiologic interest in view of recent data indicating that nitric oxide mediates in part the cutaneous vasodilation induced by heat stress in humans. Therefore, the augmentation of nitric oxide bioactivity in the dermal microcirculation might be one mechanism whereby endurance training modifies the thermoregulatory control of skin blood flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fungus Aspergillus nidulans contains both a mitochondrial and peroxisomal ß-oxidation pathway. This work was aimed at studying the influence of mutations in the foxA gene, encoding a peroxisomal multifunctional protein, or in the scdA/echA genes, encoding a mitochondrial short-chain dehydrogenase and an enoyl-CoA hydratase, respectively, on the carbon flux to the peroxisomal ß-oxidation pathway. A. nidulans transformed with a peroxisomal polyhydroxyalkanoate (PHA) synthase produced PHA from the polymerization of 3-hydroxyacyl-CoA intermediates derived from the peroxisomal ß-oxidation of external fatty acids. PHA produced from erucic acid or heptadecanoic acid contained a broad spectrum of monomers, ranging from 5 to 14 carbons, revealing that the peroxisomal ß-oxidation cycle can handle both long and short-chain intermediates. While the ∆foxA mutant grown on erucic acid or oleic acid synthesized 10-fold less PHA compared to wild type, the same mutant grown on octanoic acid or heptanoic acid produced 3- to 6-fold more PHA. Thus, while FoxA has an important contribution to the degradation of long-chain fatty acids, the flux of short-chain fatty acids to peroxisomal ß-oxidation is actually enhanced in its absence. While no change in PHA was observed in the ∆scdA∆echA mutant grown on erucic acid or oleic acid compared to wild type, there was a 2- to 4-fold increased synthesis of PHA in ∆scdA∆echA cells grown in octanoic acid or heptanoic acid. These results reveal that a compensatory mechanism exists in A. nidulans that increases the flux of short-chain fatty acids towards the peroxisomal ß-oxidation cycle when the mitochondrial ß-oxidation pathway is defective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short-chain-length-medium-chain-length polyhydroxyalkanoates were synthesized in Saccharomyces cerevisiae from intermediates of the beta-oxidation cycle by expressing the polyhydroxyalkanoate synthases from Aeromonas caviae and Ralstonia eutropha in the peroxisomes. The quantity of polymer produced was increased by using a mutant of the beta-oxidation-associated multifunctional enzyme with low dehydrogenase activity toward R-3-hydroxybutyryl coenzyme A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat shock protein 90 (Hsp90) is an essential chaperone involved in the fungal stress response that can be harnessed as a novel antifungal target for the treatment of invasive aspergillosis. We previously showed that genetic repression of Hsp90 reduced Aspergillus fumigatus virulence and potentiated the effect of the echinocandin caspofungin. In this study, we sought to identify sites of posttranslational modifications (phosphorylation or acetylation) that are important for Hsp90 function in A. fumigatus. Phosphopeptide enrichment and tandem mass spectrometry revealed phosphorylation of three residues in Hsp90 (S49, S288, and T681), but their mutation did not compromise Hsp90 function. Acetylation of lysine residues of Hsp90 was recovered after treatment with deacetylase inhibitors, and acetylation-mimetic mutations (K27A and K271A) resulted in reduced virulence in a murine model of invasive aspergillosis, supporting their role in Hsp90 function. A single deletion of lysine K27 or an acetylation-mimetic mutation (K27A) resulted in increased susceptibility to voriconazole and caspofungin. This effect was attenuated following a deacetylation-mimetic mutation (K27R), suggesting that this site is crucial and should be deacetylated for proper Hsp90 function in antifungal resistance pathways. In contrast to previous reports in Candida albicans, the lysine deacetylase inhibitor trichostatin A (TSA) was active alone against A. fumigatus and potentiated the effect of caspofungin against both the wild type and an echinocandin-resistant strain. Our results indicate that the Hsp90 K27 residue is required for azole and echinocandin resistance in A. fumigatus and that deacetylase inhibition may represent an adjunctive anti-Aspergillus strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate estimates of water losses by evaporation from shallow water tables are important for hydrological, agricultural, and climatic purposes. An experiment was conducted in a weighing lysimeter to characterize the diurnal dynamics of evaporation under natural conditions. Sampling revealed a completely dry surface sand layer after 5 days of evaporation. Its thickness was <1 cm early in the morning, increasing to reach 4?5 cm in the evening. This evidence points out fundamental limitations of the approaches that assume hydraulic connectivity from the water table up to the surface, as well as those that suppose monotonic drying when unsteady conditions prevail. The computed vapor phase diffusion rates from the apparent drying front based on Fick's law failed to reproduce the measured cumulative evaporation during the sampling day. We propose that two processes rule natural evaporation resulting from daily fluctuations of climatic variables: (i) evaporation of water, stored during nighttime due to redistribution and vapor condensation, directly into the atmosphere from the soil surface during the early morning hours, that could be simulated using a mass transfer approach and (ii) subsurface evaporation limited by Fickian diffusion, afterward. For the conditions prevailing during the sampling day, the amount of water stored at the vicinity of the soil surface was 0.3 mm and was depleted before 11:00. Combining evaporation from the surface before 11:00 and subsurface evaporation limited by Fickian diffusion after that time, the agreement between the estimated and measured cumulative evaporation was significantly improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Reactive oxygen species production increases during aging, whereas protective mechanisms such as heat shock proteins (HSPs) or antioxidant capacity are depressed. Physical activity has been hypothesized to provide protection against oxidative damage during aging, but results remain controversial. This study aimed to investigate the effect of different levels of physical activity during aging on Hsp72 expression and systemic oxidative stress at rest and in response to maximal exercise. METHODS: Plasma antioxidant capacity (Trolox equivalent antioxidant capacity, TEAC), thiobarbituric acid-reactive species (TBARS), advanced oxidized proteins products (AOPP), and Hsp72 expression in leukocytes were measured before and after maximal exercise testing in 32 elderly persons (aged 73.2 years), who were assigned to two different groups depending on their level of physical activity during the past 12 months (OLow = moderate to low level; OHigh = higher level). RESULTS: The OHigh group showed higher aerobic fitness and TEAC (both representing 120% of OLow values) as well as lower oxidative damage (50% of OLow values) and Hsp72 expression. Exercise led to a lower increase in oxidative damage in the OHigh group. Aerobic fitness was positively correlated with TEAC and negatively with lipid peroxidation (TBARS). Hsp72 expression was negatively correlated with TEAC but positively correlated with TBARS levels. CONCLUSIONS: The key finding of this study is that, in people aged 60 to 90 years, long-term high level of physical activity preserved antioxidant capacity and limited oxidative damage accumulation. It also downregulated Hsp72 expression, an adaptation potentially resulting from lower levels of oxidative damage.