30 resultados para H-Infinity Time-Varying Adaptive Algorithm
Resumo:
This work consists of three essays investigating the ability of structural macroeconomic models to price zero coupon U.S. government bonds. 1. A small scale 3 factor DSGE model implying constant term premium is able to provide reasonable a fit for the term structure only at the expense of the persistence parameters of the structural shocks. The test of the structural model against one that has constant but unrestricted prices of risk parameters shows that the exogenous prices of risk-model is only weakly preferred. We provide an MLE based variance-covariance matrix of the Metropolis Proposal Density that improves convergence speeds in MCMC chains. 2. Affine in observable macro-variables, prices of risk specification is excessively flexible and provides term-structure fit without significantly altering the structural parameters. The exogenous component of the SDF is separating the macro part of the model from the term structure and the good term structure fit has as a driving force an extremely volatile SDF and an implied average short rate that is inexplicable. We conclude that the no arbitrage restrictions do not suffice to temper the SDF, thus there is need for more restrictions. We introduce a penalty-function methodology that proves useful in showing that affine prices of risk specifications are able to reconcile stable macro-dynamics with good term structure fit and a plausible SDF. 3. The level factor is reproduced most importantly by the preference shock to which it is strongly and positively related but technology and monetary shocks, with negative loadings, are also contributing to its replication. The slope factor is only related to the monetary policy shocks and it is poorly explained. We find that there are gains in in- and out-of-sample forecast of consumption and inflation if term structure information is used in a time varying hybrid prices of risk setting. In-sample yield forecast are better in models with non-stationary shocks for the period 1982-1988. After this period, time varying market price of risk models provide better in-sample forecasts. For the period 2005-2008, out of sample forecast of consumption and inflation are better if term structure information is incorporated in the DSGE model but yields are better forecasted by a pure macro DSGE model.
Resumo:
In decision making, speed-accuracy trade-offs are well known and often inevitable because accuracy depends on being well informed and gathering information takes time. However, trade-offs between speed and cohesion, that is the degree to which a group remains together as a single entity, as a result of their decision making, have been comparatively neglected. We combine theory and experimentation to show that in decision-making systems, speed-cohesion trade-offs are a natural complement to speed-accuracy trade-offs and are therefore of general importance. We then analyse the decision performance of 32 rock ant, Temnothorax albipennis, colonies in experiments in which accuracy of collective decision making was held constant, but time urgency varied. These experiments reveal for the first time an adaptive speed-cohesion trade-off in collective decision making and how this is achieved. In accord with different time constraints, colonies can decide quickly, at the cost of social unity, or they can decide slowly with much greater cohesion. We discuss the similarity between cohesion and the term precision as used in statistics and engineering. This emphasizes the generality of speed versus cohesion/precision trade-offs in decision making and decision implementation in other fields within animal behaviour such as sexually selected motor displays and even certain aspects of birdsong. We also suggest that speed versus precision trade-offs may occur when individuals within a group need to synchronize their activity, and in collective navigation, cooperative hunting and in certain escape behaviours.
Resumo:
The hydrogeological properties and responses of a productive aquifer in northeastern Switzerland are investigated. For this purpose, 3D crosshole electrical resistivity tomography (ERT) is used to define the main lithological structures within the aquifer (through static inversion) and to monitor the water infiltration from an adjacent river. During precipitation events and subsequent river flooding, the river water resistivity increases. As a consequence, the electrical characteristics of the infiltrating water can be used as a natural tracer to delineate preferential flow paths and flow velocities. The focus is primarily on the experiment installation, data collection strategy, and the structural characterization of the site and a brief overview of the ERT monitoring results. The monitoring system comprises 18 boreholes each equipped with 10 electrodes straddling the entire thickness of the gravel aquifer. A multi-channel resistivity system programmed to cycle through various four-point electrode configurations of the 180 electrodes in a rolling sequence allows for the measurement of approximately 15,500 apparent resistivity values every 7 h on a continuous basis. The 3D static ERT inversion of data acquired under stable hydrological conditions provides a base model for future time-lapse inversion studies and the means to investigate the resolving capability of our acquisition scheme. In particular, it enables definition of the main lithological structures within the aquifer. The final ERT static model delineates a relatively high-resistivity, low-porosity, intermediate-depth layer throughout the investigated aquifer volume that is consistent with results from well logging and seismic and radar tomography models. The next step will be to define and implement an appropriate time-lapse ERT inversion scheme using the river water as a natural tracer. The main challenge will be to separate the superposed time-varying effects of water table height, temperature, and salinity variations associated with the infiltrating water.
Resumo:
We present a novel spatiotemporal-adaptive Multiscale Finite Volume (MsFV) method, which is based on the natural idea that the global coarse-scale problem has longer characteristic time than the local fine-scale problems. As a consequence, the global problem can be solved with larger time steps than the local problems. In contrast to the pressure-transport splitting usually employed in the standard MsFV approach, we propose to start directly with a local-global splitting that allows to locally retain the original degree of coupling. This is crucial for highly non-linear systems or in the presence of physical instabilities. To obtain an accurate and efficient algorithm, we devise new adaptive criteria for global update that are based on changes of coarse-scale quantities rather than on fine-scale quantities, as it is routinely done before in the adaptive MsFV method. By means of a complexity analysis we show that the adaptive approach gives a noticeable speed-up with respect to the standard MsFV algorithm. In particular, it is efficient in case of large upscaling factors, which is important for multiphysics problems. Based on the observation that local time stepping acts as a smoother, we devise a self-correcting algorithm which incorporates the information from previous times to improve the quality of the multiscale approximation. We present results of multiphase flow simulations both for Darcy-scale and multiphysics (hybrid) problems, in which a local pore-scale description is combined with a global Darcy-like description. The novel spatiotemporal-adaptive multiscale method based on the local-global splitting is not limited to porous media flow problems, but it can be extended to any system described by a set of conservation equations.
Resumo:
The state of the art to describe image quality in medical imaging is to assess the performance of an observer conducting a task of clinical interest. This can be done by using a model observer leading to a figure of merit such as the signal-to-noise ratio (SNR). Using the non-prewhitening (NPW) model observer, we objectively characterised the evolution of its figure of merit in various acquisition conditions. The NPW model observer usually requires the use of the modulation transfer function (MTF) as well as noise power spectra. However, although the computation of the MTF poses no problem when dealing with the traditional filtered back-projection (FBP) algorithm, this is not the case when using iterative reconstruction (IR) algorithms, such as adaptive statistical iterative reconstruction (ASIR) or model-based iterative reconstruction (MBIR). Given that the target transfer function (TTF) had already shown it could accurately express the system resolution even with non-linear algorithms, we decided to tune the NPW model observer, replacing the standard MTF by the TTF. It was estimated using a custom-made phantom containing cylindrical inserts surrounded by water. The contrast differences between the inserts and water were plotted for each acquisition condition. Then, mathematical transformations were performed leading to the TTF. As expected, the first results showed a dependency of the image contrast and noise levels on the TTF for both ASIR and MBIR. Moreover, FBP also proved to be dependent of the contrast and noise when using the lung kernel. Those results were then introduced in the NPW model observer. We observed an enhancement of SNR every time we switched from FBP to ASIR to MBIR. IR algorithms greatly improve image quality, especially in low-dose conditions. Based on our results, the use of MBIR could lead to further dose reduction in several clinical applications.
Resumo:
We present a spatiotemporal adaptive multiscale algorithm, which is based on the Multiscale Finite Volume method. The algorithm offers a very efficient framework to deal with multiphysics problems and to couple regions with different spatial resolution. We employ the method to simulate two-phase flow through porous media. At the fine scale, we consider a pore-scale description of the flow based on the Volume Of Fluid method. In order to construct a global problem that describes the coarse-scale behavior, the equations are averaged numerically with respect to auxiliary control volumes, and a Darcy-like coarse-scale model is obtained. The space adaptivity is based on the idea that a fine-scale description is only required in the front region, whereas the resolution can be coarsened elsewhere. Temporal adaptivity relies on the fact that the fine-scale and the coarse-scale problems can be solved with different temporal resolution (longer time steps can be used at the coarse scale). By simulating drainage under unstable flow conditions, we show that the method is able to capture the coarse-scale behavior outside the front region and to reproduce complex fluid patterns in the front region.
Resumo:
Although fetal anatomy can be adequately viewed in new multi-slice MR images, many critical limitations remain for quantitative data analysis. To this end, several research groups have recently developed advanced image processing methods, often denoted by super-resolution (SR) techniques, to reconstruct from a set of clinical low-resolution (LR) images, a high-resolution (HR) motion-free volume. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has been quite attracted by Total Variation energies because of their ability in edge preserving but only standard explicit steepest gradient techniques have been applied for optimization. In a preliminary work, it has been shown that novel fast convex optimization techniques could be successfully applied to design an efficient Total Variation optimization algorithm for the super-resolution problem. In this work, two major contributions are presented. Firstly, we will briefly review the Bayesian and Variational dual formulations of current state-of-the-art methods dedicated to fetal MRI reconstruction. Secondly, we present an extensive quantitative evaluation of our SR algorithm previously introduced on both simulated fetal and real clinical data (with both normal and pathological subjects). Specifically, we study the robustness of regularization terms in front of residual registration errors and we also present a novel strategy for automatically select the weight of the regularization as regards the data fidelity term. Our results show that our TV implementation is highly robust in front of motion artifacts and that it offers the best trade-off between speed and accuracy for fetal MRI recovery as in comparison with state-of-the art methods.
Resumo:
When speech is degraded, word report is higher for semantically coherent sentences (e.g., her new skirt was made of denim) than for anomalous sentences (e.g., her good slope was done in carrot). Such increased intelligibility is often described as resulting from "top-down" processes, reflecting an assumption that higher-level (semantic) neural processes support lower-level (perceptual) mechanisms. We used time-resolved sparse fMRI to test for top-down neural mechanisms, measuring activity while participants heard coherent and anomalous sentences presented in speech envelope/spectrum noise at varying signal-to-noise ratios (SNR). The timing of BOLD responses to more intelligible speech provides evidence of hierarchical organization, with earlier responses in peri-auditory regions of the posterior superior temporal gyrus than in more distant temporal and frontal regions. Despite Sentence content × SNR interactions in the superior temporal gyrus, prefrontal regions respond after auditory/perceptual regions. Although we cannot rule out top-down effects, this pattern is more compatible with a purely feedforward or bottom-up account, in which the results of lower-level perceptual processing are passed to inferior frontal regions. Behavioral and neural evidence that sentence content influences perception of degraded speech does not necessarily imply "top-down" neural processes.
Resumo:
This study introduces a novel approach for automatic temporal phase detection and inter-arm coordination estimation in front-crawl swimming using inertial measurement units (IMUs). We examined the validity of our method by comparison against a video-based system. Three waterproofed IMUs (composed of 3D accelerometer, 3D gyroscope) were placed on both forearms and the sacrum of the swimmer. We used two underwater video cameras in side and frontal views as our reference system. Two independent operators performed the video analysis. To test our methodology, seven well-trained swimmers performed three 300 m trials in a 50 m indoor pool. Each trial was in a different coordination mode quantified by the index of coordination. We detected different phases of the arm stroke by employing orientation estimation techniques and a new adaptive change detection algorithm on inertial signals. The difference of 0.2 +/- 3.9% between our estimation and video-based system in assessment of the index of coordination was comparable to experienced operators' difference (1.1 +/- 3.6%). The 95% limits of agreement of the difference between the two systems in estimation of the temporal phases were always less than 7.9% of the cycle duration. The inertial system offers an automatic easy-to-use system with timely feedback for the study of swimming.
Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI.
Resumo:
Validation is arguably the bottleneck in the diffusion magnetic resonance imaging (MRI) community. This paper evaluates and compares 20 algorithms for recovering the local intra-voxel fiber structure from diffusion MRI data and is based on the results of the "HARDI reconstruction challenge" organized in the context of the "ISBI 2012" conference. Evaluated methods encompass a mixture of classical techniques well known in the literature such as diffusion tensor, Q-Ball and diffusion spectrum imaging, algorithms inspired by the recent theory of compressed sensing and also brand new approaches proposed for the first time at this contest. To quantitatively compare the methods under controlled conditions, two datasets with known ground-truth were synthetically generated and two main criteria were used to evaluate the quality of the reconstructions in every voxel: correct assessment of the number of fiber populations and angular accuracy in their orientation. This comparative study investigates the behavior of every algorithm with varying experimental conditions and highlights strengths and weaknesses of each approach. This information can be useful not only for enhancing current algorithms and develop the next generation of reconstruction methods, but also to assist physicians in the choice of the most adequate technique for their studies.
Resumo:
Purpose: To evaluate the diagnostic value and image quality of CT with filtered back projection (FBP) compared with adaptive statistical iterative reconstructed images (ASIR) in body stuffers with ingested cocaine-filled packets.Methods and Materials: Twenty-nine body stuffers (mean age 31.9 years, 3 women) suspected for ingestion of cocaine-filled packets underwent routine-dose 64-row multidetector CT with FBP (120kV, pitch 1.375, 100-300 mA and automatic tube current modulation (auto mA), rotation time 0.7sec, collimation 2.5mm), secondarily reconstructed with 30 % and 60 % ASIR. In 13 (44.83%) out of the body stuffers cocaine-filled packets were detected, confirmed by exact analysis of the faecal content including verification of the number (range 1-25). Three radiologists independently and blindly evaluated anonymous CT examinations (29 FBP-CT and 68 ASIR-CT) for the presence and number of cocaine-filled packets indicating observers' confidence, and graded them for diagnostic quality, image noise, and sharpness. Sensitivity, specificity, area under the receiver operating curve (ROC) Az and interobserver agreement between the 3 radiologists for FBP-CT and ASIR-CT were calculated.Results: The increase of the percentage of ASIR significantly diminished the objective image noise (p<0.001). Overall sensitivity and specificity for the detection of the cocaine-filled packets were 87.72% and 76.15%, respectively. The difference of ROC area Az between the different reconstruction techniques was significant (p= 0.0101), that is 0.938 for FBP-CT, 0.916 for 30 % ASIR-CT, and 0.894 for 60 % ASIR-CT.Conclusion: Despite the evident image noise reduction obtained by ASIR, the diagnostic value for detecting cocaine-filled packets decreases, depending on the applied ASIR percentage.
Resumo:
Forest fires are defined as uncontrolled fires often occurring in wildland areas, but that can also affect houses or agricultural resources. Causes are both natural (e.g.,lightning phenomena) and anthropogenic (human negligence or arsons).Major environmental factors influencing the fire ignition and propagation are climate and vegetation. Wildfires are most common and severe during drought period and on windy days. Moreover, under water-stress conditions, which occur after a long hot and dry period, the vegetation is more vulnerable to fire. These conditions are common in the United State and Canada, where forest fires represent a big problem. We focused our analysis on the state of Florida, for which a big dataset on forest fires detection is readily available. USDA Forest Service Remote Sensing Application Center, in collaboration with NASA-Goddard Space Flight Center and the University of Maryland, has compiled daily MODIS Thermal Anomalies (fires and biomass burning images) produced by NASA using a contextual algorithm that exploits the strong emission of mid-infrared radiation from fires. Fire classes were converted in GIS format: daily MODIS fire detections are provided as the centroids of the 1 kilometer pixels and compiled into daily Arc/INFO point coverage.
Resumo:
Le rétinoblastome (Rb) est une tumeur provenant des cellules rétiniennes progénitrices des photorécepteurs. C'est la tumeur pédiatrique maligne la plus fréquente avec une incidence par naissance évaluée entre 1/15Ό00 et 1/20Ό00. Les enfants atteints de Rb sont diagnostiqué dans leur grande majorité avant l'âge de 4 ans, soit le temps nécessaire à la différentiation et à la maturation des photorécepteurs et donc à la disparition de la cellule d'origine du Rb. La survie du patient, la sauvegarde oculaire et le pronostic visuel restent excellents pour autant que le traitement ne soit pas différé. Dans sa variante non héréditaire (60%) le Rb est toujours unilatéral et sporadique. Le Rb héréditaire de transmission dominante autosomique (40%), se décline sous toutes les formes, familiale (10%) ou sporadique (30%), que l'atteinte soit unilatérale ou bilatérale. La majorité des mutations causales sont uniques et distribuées de façon aléatoire sur la totalité du gène RB1 sans région prédisposante. La détection de ces mutations est couteuse et chronophage, tout en présentant un taux de détection relativement bas; surtout dans les cas de Rb sporadiques unilatéraux. Dans le but d'identifier les patients présentant un risque réel de développer un Rb, et de réduire le nombre d'examens sous narcose requis pour le dépistage de la maladie chez les sujets à risque, nous avons développé une stratégie sensible, rapide, efficace et peu couteuse basée sur une analyse de l'haplotype intragénique. Cet algorithme prend en compte a) la perte d'hétérozygotie intratumorale du gène RB1, b) l'origine paternelle préférentielle des nouvelles mutations germinales et c) un risque a priori dérivé des données empiriques de Vogel. Pendant la période allant de janvier 1994 à décembre 2006, nous avons comparé l'apparition de nouveau Rb parmi la fratrie et la descendance de patient atteints au nombre de nouveaux cas attendus calculé par notre algorithme. 134 familles ont été étudiées. L'analyse moléculaire a été effectuée chez 570 personnes dont 99 patients âgés de moins de 4 ans et donc à risque de développer un Rb. Parmi cette cohorte, nous avons observé l'apparition d'un cas de Rb, alors que les risques cumulés a posteriori calculé par notre algorithme prédisait l'apparition de 1.77 nouveau cas. Dans cette étude, nous avons pu valider notre algorithme prédisant la récurrence de Rb chez les parents de 1er degré de patients atteints. Cet outil devrait grandement faciliter le conseil génétique ainsi que le suivi des patients à risque de développer un Rb, surtout dans les cas ou le séquençage direct du gène RB1 n'est pas disponible ou est resté non informatif. - Purpose: Most RBI mutations are unique and distributed throughout the RBI gene. Their detection can be time-consuming and the yield especially low in cases of conservatively-treated sporadic unilateral retinoblas-toma (Rb) patients. In order to identify patients with true risk of developing Rb, and to reduce the number of unnecessary examinations under anesthesia in all other cases, we developed a universal sensitive, efficient and cost-effective strategy based on intragenic haplotype analysis. Methods: This algorithm allows the calculation of the a posteriori risk of developing Rb and takes into account (a) RBI loss of heterozygosity in tumors, (b) preferential paternal origin of new germline mutations, (c) a priori risk derived from empirical data by Vogel, and (d) disease penetrance of 90% in most cases. We report the occurrence of Rb in first degree relatives of patients with sporadic Rb who visited the Jules Gonin Eye Hospital, Lausanne, Switzerland, from January 1994 to December 2006 compared to expected new cases of Rb using our algorithm. Results: A total of 134 families with sporadic Rb were enrolled; testing was performed in 570 individuals and 99 patients younger than 4 years old were identified. We observed one new case of Rb. Using our algorithm, the cumulated total a posteriori risk of recurrence was 1.77. Conclusions: This is the first time that linkage analysis has been validated to monitor the risk of recurrence in sporadic Rb. This should be a useful tool in genetic counseling, especially when direct RBI screening for mutations leaves a negative result or is unavailable.
Resumo:
Major climatic and geological events but also population history (secondary contacts) have generated cycles of population isolation and connection of long and short periods. Recent empirical and theoretical studies suggest that fast evolutionary processes might be triggered by such events, as commonly illustrated in ecology by the adaptive radiation of cichlid fishes (isolation and reconnection of lakes and watersheds) and in epidemiology by the fast adaptation of the influenza virus (isolation and reconnection in hosts). We test whether cyclic population isolation and connection provide the raw material (standing genetic variation) for species evolution and diversification. Our analytical results demonstrate that population isolation and connection can provide, to populations, a high excess of genetic diversity compared with what is expected at equilibrium. This excess is either cyclic (high allele turnover) or cumulates with time depending on the duration of the isolation and the connection periods and the mutation rate. We show that diversification rates of animal clades are associated with specific periods of climatic cycles in the Quaternary. We finally discuss the importance of our results for macroevolutionary patterns and for the inference of population history from genomic data.