51 resultados para Green, Donald
Resumo:
In this study, we show that a chemical dye, malachite green (MG), which is commonly used in the fish industry as an antifungal, antiparasitic, and antibacterial agent, could effectively kill Candida albicans and non-C. albicans species. We have demonstrated that Candida cells are susceptible to MG at a very low concentration (MIC that reduces growth by 50% [MIC(50)], 100 ng ml(-1)) and that the effect of MG is independent of known antifungal targets, such as ergosterol metabolism and major drug efflux pump proteins. Transcriptional profiling in response to MG treatment of C. albicans cells revealed that of a total of 207 responsive genes, 167 genes involved in oxidative stress, virulence, carbohydrate metabolism, heat shock, amino acid metabolism, etc., were upregulated, while 37 genes involved in iron acquisition, filamentous growth, mitochondrial respiration, etc., were downregulated. We confirmed experimentally that Candida cells exposed to MG resort to a fermentative mode of metabolism, perhaps due to defective respiration. In addition, we showed that MG triggers depletion of intracellular iron pools and enhances reactive oxygen species (ROS) levels. These effects could be reversed by the addition of iron or antioxidants, respectively. We provided evidence that the antifungal effect of MG is exerted through the transcription regulators UPC2 (regulating ergosterol biosynthesis and azole resistance) and STP2 (regulating amino acid permease genes). Taken together, our transcriptome, genetic, and biochemical results allowed us to decipher the multiple mechanisms by which MG exerts its anti-Candida effects, leading to a metabolic shift toward fermentation, increased generation of ROS, labile iron deprivation, and cell necrosis.
Resumo:
AIMS: To develop reporter constructs based on stable and unstable variants of the green fluorescent protein (GFP) for monitoring balanced production of antifungal compounds that are crucial for the capacity of the root-colonizing Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soil-borne pathogenic fungi. METHODS AND RESULTS: Pseudomonas fluorescens CHA0 produces the three antifungal metabolites 2,4-diacetylphloroglucinol (DAPG), pyoluteorin (PLT) and pyrrolnitrin (PRN). The gfp[mut3] and gfp[AAV] reporter genes were fused to the promoter regions of the DAPG, PLT and PRN biosynthetic genes. The reporter fusions were then used to follow the kinetics of expression of the three antifungal metabolites in a microplate assay. DAPG and PLT were found to display an inverse relationship in which each metabolite activates its own biosynthesis while repressing the synthesis of the other metabolite. PRN appears not to be involved in this balance. However, the microbial and plant phenolic metabolite salicylate was found to interfere with the expression of both DAPG and PLT. CONCLUSIONS: The results obtained provide evidence that P. fluorescens CHA0 may keep the antifungal compounds DAPG and PLT at a fine-tuned balance that can be affected by certain microbial and plant phenolics. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, the present study is the first to use stable and unstable GFP variants to study antibiotic gene expression in a biocontrol pseudomonad. The developed reporter fusions will be a highly valuable tool to study in situ expression of this bacterial biocontrol trait on plant roots, i.e. at the site of pathogen suppression.
Resumo:
Reproductive isolation between lineages is expected to accumulate with divergence time, but the time taken to speciate may strongly vary between different groups of organisms. In anuran amphibians, laboratory crosses can still produce viable hybrid offspring >20 My after separation, but the speed of speciation in closely related anuran lineages under natural conditions is poorly studied. Palearctic green toads (Bufo viridis subgroup) offer an excellent system to address this question, comprising several lineages that arose at different times and form secondary contact zones. Using mitochondrial and nuclear markers, we previously demonstrated that in Sicily, B. siculus and B. balearicus developed advanced reproductive isolation after Plio-Pleistocene divergence (2.6 My, 3.3-1.9), with limited historic mtDNA introgression, scarce nuclear admixture, but low, if any, current gene flow. Here, we study genetic interactions between younger lineages of early Pleistocene divergence (1.9 My, 2.5-1.3) in northeastern Italy (B. balearicus, B. viridis). We find significantly more, asymmetric nuclear and wider, differential mtDNA introgression. The population structure seems to be molded by geographic distance and barriers (rivers), much more than by intrinsic genomic incompatibilities. These differences of hybridization between zones may be partly explained by differences in the duration of previous isolation. Scattered research on other anurans suggests that wide hybrid zones with strong introgression may develop when secondary contacts occur <2 My after divergence, whereas narrower zones with restricted gene flow form when divergence exceeds 3 My. Our study strengthens support for this rule of thumb by comparing lineages with different divergence times within the same radiation.
Resumo:
We report new polymorphic microsatellites for three species of Palearctic green toads (Bufo viridis subgroup): 10 in B. balearicus and seven each in B. siculus and B. boulengeri. Diversity at these loci, measured for 27 B. balearicus, 23 B. siculus and 11 B. boulengeri, ranged from low to high (two to 10 alleles). Mitotyping primers, specific to the control region, which allow fast screening of parapatric Sicilian endemic B. siculus and Italian mainland-origin B. balearicus, were developed.
Resumo:
We report 13 new polymorphic microsatellite markers for the European green toad Bufo viridis viridis (B. viridis subgroup), a declining amphibian from Central, Southeastern and Eastern Europe. Diversity at these loci estimated for 19 individuals ranged from two to ten alleles. Most of these primers also cross-amplify in related West-Mediterranean green toad species (Bufo balearicus, B. siculus and B. boulengeri). These microsatellites will be useful for conservation genetics of threatened Bufo viridis viridis populations and evolutionary studies of green toad taxa in secondary contact to examine hybridization.
Resumo:
We present the first approach to the genetic diversity and structure of the Balearic toad (Bufo balearicus Boettger, 1880) for the island of Menorca. Forty-one individ- uals from 21 localities were analyzed for ten microsatellite loci. We used geo-refer- enced individual multilocus genotypes and a model-based clustering method for the inference of the number of populations and of the spatial location of genetic dis- continuities between those populations.¦Only six of the microsatellites analyzed were polymorphic. We revealed a northwest- ern area inhabited by a single population with several well-connected localities and another set of populations in the southeast that includes a few unconnected small units with genetically significant differences among them as well as with the individ- uals from the northwest of the island. The observed fragmentation may be explained by shifts from agricultural to tourism practices that have been taking place on the island of Menorca since the 1960s. The abandonment of rural activities in favor of urbanization and concomitant service areas has mostly affected the southeast of the island and is currently threatening the overall geographic connectivity between the different farming areas of the island that are inhabited by the Balearic toad.
Resumo:
We report 30 polymorphic microsatellite markers for five species of Palearctic green toads (Bufo viridis subgroup): 23 in the diploid B. latastii, 19 in diploid B. turanensis, 20 in diploid B. shaartusiensis, 27 in tetraploid B. pewzowi, and 30 in triploid B. baturae. Genetic diversity at these loci, measured for 10-18 individuals per species, ranged from 2 to 19 alleles. These microsatellite loci will be useful for conservation plans (genetic diversity, population structure, evolutionary units), inheritance patterns, and evolution of green toads.
Resumo:
Mutants were produced in the A-domain of HbpR, a protein belonging to the XylR family of σ(54)-dependent transcription activators, with the purpose of changing its effector recognition specificity from 2-hydroxybiphenyl (2-HBP, the cognate effector) to 2-chlorobiphenyl (2-CBP). Mutations were introduced in the hbpR gene part for the A-domain via error-prone polymerase chain reaction, and assembled on a gene circuitry plasmid in Escherichia coli, permitting HbpR-dependent induction of the enhanced green fluorescent protein (egfp). Cells with mutant HbpR proteins responsive to 2-CBP were enriched and separated in a flow cytometry-assisted cell-sorting procedure. Some 70 mutants were isolated and the A-domain mutations mapped. One of these had acquired true 2-CBP recognition but reacted hypersensitively to 2-HBP (20-fold more than the wild type), whereas others had reduced sensitivity to 2-HBP but a gain of 2-CBP recognition. Sequencing showed that most mutants carried double or triple mutations in the A-domain gene part, and were not located in previously recognized conserved residues within the XylR family members. Further selection from a new mutant pool prepared of the hypersensitive mutant did not result in increased 2-CBP or reduced 2-HBP recognition. Our data thus demonstrate that a one-step in vitro 'evolutionary' adaptation of the HbpR protein can result in both enhancement and reduction of the native effector recognition.
Resumo:
BACKGROUND: Fluorescein (FA) and indocyanine-green angiography (ICGA) may offer valuable information concerning disease severity and prognosis in ocular syphilis. The aim of the present study is to describe angiographic patterns encountered in the context of ocular syphilis, and to explore the associations between specific angiographic manifestations and severity of disease presentation, as well as disease evolution after treatment. METHODS: We performed a retrospective institutional study with the inclusion of 23 patients with ocular syphilis presenting to the uveitis clinic of the Jules-Gonin Eye Hospital in a 10-year period. FA and ICGA were performed following a standard protocol for posterior uveitis. Patterns of fluorescence were noted, and statistical associations between each angiographic pattern and any demographic, clinical, or laboratory parameter at baseline and after treatment were sought. RESULTS: The presence of any dark dots in ICGA was significantly associated with anterior uveitis (p = 0.031). The presence of hot spots in ICGA was significantly associated with longer duration of symptoms prior to initial visit (p = 0.032) and with male gender (p = 0.012). Weak non-significant trends were found associating vascular staining in FA with anterior uveitis (p = 0.066), vitritis (p = 0.069), and younger age (p = 0.061), as well as disc hyperfluorescence in FA with seropositivity for HIV (p = 0.089) and macular edema in FA with longer disease duration (p = 0.061). The presence of any dark dots in ICGA exhibited a weak trend of association with anterior uveitis and/or vitritis (p = 0.079). CONCLUSIONS: Out of the several associations identified implicating specific angiographic features, we underline the possible role of the presence of dark dots in ICGA for identifying active inflammation, and the role of hot spots in ICGA as markers of long-standing disease. Vascular staining in FA appears to be more common in patients with severe ocular inflammation with presence of anterior uveitis and/or vitritis.
Resumo:
PURPOSE: To determine the role of Indocyanin Green (ICG) angiography in localizing occult new vessels associated with age-related macular degeneration (ARMD) and assess the possibilities of ICG guided laser photocoagulations. PATIENTS AND METHODS: Fluorescein and ICG angiographies (IMAGEnet system) of 62 patients with occult new vessels (ONV), serous (SPED) or vascular (VPED) pigment epithelium detachment have been studied. RESULTS: Based on fondoscopic examination and fluorescein angiography, 43 eyes (69%) disclosed ONV, 8 (13%) SPED and 11 (18%) VPED. Choroidal neovascularisation was confirmed by ICG angiography in 37 ONV cases (86%), in 8 (72%) VPED cases, but in no SPED. Conversion of ONV in classical neovascular membranes was possible in 19 ONV cases (44%) and in 6 (54%) VPED cases, making a laser photocoagulation possible in 9 eyes (36%). CONCLUSION: ICG angiography plays an important role in the evaluation, classification and laser treatment of patients with ONV secondary to ARMD.
Resumo:
Hepatitis C virus (HCV) replicates its genome in a membrane-associated replication complex, composed of viral proteins, replicating RNA and altered cellular membranes. We describe here HCV replicons that allow the direct visualization of functional HCV replication complexes. Viable replicons selected from a library of Tn7-mediated random insertions in the coding sequence of nonstructural protein 5A (NS5A) allowed the identification of two sites near the NS5A C terminus that tolerated insertion of heterologous sequences. Replicons encoding green fluorescent protein (GFP) at these locations were only moderately impaired for HCV RNA replication. Expression of the NS5A-GFP fusion protein could be demonstrated by immunoblot, indicating that the GFP was retained during RNA replication and did not interfere with HCV polyprotein processing. More importantly, expression levels were robust enough to allow direct visualization of the fusion protein by fluorescence microscopy. NS5A-GFP appeared as brightly fluorescing dot-like structures in the cytoplasm. By confocal laser scanning microscopy, NS5A-GFP colocalized with other HCV nonstructural proteins and nascent viral RNA, indicating that the dot-like structures, identified as membranous webs by electron microscopy, represent functional HCV replication complexes. These findings reveal an unexpected flexibility of the C-terminal domain of NS5A and provide tools for studying the formation and turnover of HCV replication complexes in living cells.
Resumo:
Electrically assisted bicycles (EAB) are flourishing in cities throughout the world and capitalize on ecological and practical advantages, helping in the fight against pollution, CO2 emissions and traffic jam. Human power is necessary to activate the electrical support, so that it equals to a moderate intensity physical activity (> 3 MET), or a vigorous one on hilly courses (>6 MET). The ecological benefits are obvious and transportation departments tend to support citizens who purchase one. EAB offer increased mobility at speeds of 15 to 25 km/h depending on hills and fitness of the rider, but could cause more accidents. EAB is linked to a real physical activity beneficial for health, but potentially more dangerous than a traditional bicycle.