19 resultados para Google Cloud, App Engine, BaaS, Android


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Fragile X mental retardation protein (FMRP) regulates neuronal RNA metabolism, and its absence or mutations leads to the Fragile X syndrome (FXS). The β-amyloid precursor protein (APP) is involved in Alzheimer's disease, plays a role in synapse formation, and is upregulated in intellectual disabilities. Here, we show that during mouse synaptogenesis and in human FXS fibroblasts, a dual dysregulation of APP and the α-secretase ADAM10 leads to the production of an excess of soluble APPα (sAPPα). In FXS, sAPPα signals through the metabotropic receptor that, activating the MAP kinase pathway, leads to synaptic and behavioral deficits. Modulation of ADAM10 activity in FXS reduces sAPPα levels, restoring translational control, synaptic morphology, and behavioral plasticity. Thus, proper control of ADAM10-mediated APP processing during a specific developmental postnatal stage is crucial for healthy spine formation and function(s). Downregulation of ADAM10 activity at synapses may be an effective strategy for ameliorating FXS phenotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

WonderAlp est un cabinet de curiosités réalisé à partir d'une documentation provenant d'anciens ouvrages de voyages dans les Alpes. L'app présente des images de dragons, de fossiles, de cristaux, de plantes, d'animaux, de phénomènes naturels. Elle donne des clés pour retrouver et comprendre l'émerveillement devant la nature qui animait la science à l'époque de la curiosité (XVIe-XVIIIe siècles). WonderAlp is a cabinet of curiosities that transforms your iPad or Android into an Early Modern Wunderkammer. It displays objects discovered in the Alps during the early period of exploration. These are grouped under three titles : "Dragons of the Alps", "Fossils and Crystals", "Plants to Landscapes". It helps apprehend a natural world that is both rational and wonderful, scholarly and popular, unlike the compartmentalized thinking of modern life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Alzheimer's disease (AD) is the most frequent form of dementia in the elderly and no effective treatment is currently available. The mechanisms triggering AD onset and progression are still imperfectly dissected. We aimed at deciphering the modifications occurring in vivo during the very early stages of AD, before the development of amyloid deposits, neurofibrillary tangles, neuronal death and inflammation. Most current AD models based on Amyloid Precursor Protein (APP) overproduction beginning from in utero, to rapidly reproduce the histological and behavioral features of the disease within a few months, are not appropriate to study the early steps of AD development. As a means to mimic in vivo amyloid APP processing closer to the human situation in AD, we used an adeno-associated virus (AAV)-based transfer of human mutant APP and Presenilin 1 (PS1) genes to the hippocampi of two-month-old C57Bl/6 J mice to express human APP, without significant overexpression and to specifically induce its amyloid processing. RESULTS: The human APP, βCTF and Aβ42/40 ratio were similar to those in hippocampal tissues from AD patients. Three months after injection the murine Tau protein was hyperphosphorylated and rapid synaptic failure occurred characterized by decreased levels of both PSD-95 and metabolites related to neuromodulation, on proton magnetic resonance spectroscopy ((1)H-MRS). Astrocytic GLT-1 transporter levels were lower and the tonic glutamatergic current was stronger on electrophysiological recordings of CA1 hippocampal region, revealing the overstimulation of extrasynaptic N-methyl D-aspartate receptor (NMDAR) which precedes the loss of long-term potentiation (LTP). These modifications were associated with early behavioral impairments in the Open-field, Y-maze and Morris Mater Maze tasks. CONCLUSIONS: Altogether, this demonstrates that an AD-like APP processing, yielding to levels of APP, βCTF and Aβ42/Aβ40 ratio similar to those observed in AD patients, are sufficient to rapidly trigger early steps of the amyloidogenic and Tau pathways in vivo. With this strategy, we identified a sequence of early events likely to account for disease onset and described a model that may facilitate efforts to decipher the factors triggering AD and to evaluate early neuroprotective strategies.