64 resultados para Gold ion
Resumo:
Stable isotope labels are routinely introduced into proteomes for quantification purposes. Full labeling of cells in varying biological states, followed by sample mixing, fractionation and intensive data acquisition, is used to obtain accurate large-scale quantification of total protein levels. However, biological processes often affect only a small group of proteins for a short time, resulting in changes that are difficult to detect against the total proteome background. An alternative approach could be the targeted analysis of the proteins synthesized in response to a given biological stimulus. Such proteins can be pulse-labeled with a stable isotope by metabolic incorporation of 'heavy' amino acids. In this study we investigated the specific detection and identification of labeled proteins using acquisition methods based on Precursor Ion Scans (PIS) on a triple-quadrupole ion trap mass spectrometer. PIS-based methods were set to detect unique immonium ions originating from labeled peptides. Different labels and methods were tested in standard mixtures to optimize performance. We showed that, in comparison with an untargeted analysis on the same instrument, the approach allowed a several-fold increase in the specificity of detection of labeled proteins over unlabeled ones. The technique was applied to the identification of proteins secreted by human cells into growth media containing bovine serum proteins, allowing the preferential detection of labeled cellular proteins over unlabeled bovine ones. However, compared with untargeted acquisitions on two different instruments, the PIS-based strategy showed some limitations in sensitivity. We discuss possible perspectives of the technique.
Resumo:
SUMMARY Acid-sensing ion channels (ASICs) are non-voltage gated sodium channels. They are activated by rapid extracellular acidification and generate an inactivating inward current. Four ASIC genes have been cloned: ASIC1, 2, 3 and 4, with variants a and b for ASIC1and AS1C2. ASICs are expressed in neurons of the central (CNS) and peripheral nervous system (PNS). In the CNS, ASICs have a role in learning, memory, as well as in neuronal death in ischemia. In the PNS, ASICs are involved in the perception of acid-induced pain, as well as in mechanoperception. In one part of my thesis project, we addressed the question of the mechanism of regulation of ASIC1 a by the serine protease trypsin at the molecular level. Trypsin modifies the function of ASIC1 a but not of ASIC1b. In order to identify the channel region responsible for this effect, we created chimeras between ASIC1 a and 1b. Subsequently, to identify the exact trypsin target(s), we mutated predicted trypsin sites in the region identified by the chimera. In the second part of a project, we investigated the role of ASICs at the cellular level, in neuronal signaling. Using the whole-cell patch clamp in hippocampal neuronal culture, we studied the potential involvement of ASICs in action potential (AP) generation. In the first part of the thesis work, we showed that trypsin modifies ASIC1a function: it shifts the pH activation and the steady-state inactivation curve towards more acidic values and accelerates the time course of the channel recovery from inactivation. We also showed that trypsin cleaves ASIC1a and that the functional effect and a channel cleavage correlate. In the inactivated state, channels cannot be modified by trypsin. Cleavage occurs in a channel region that is also important for inactivation of all ASICs; a part of this region is critical for the inhibition of ASIC1 a by the spider toxin Psalmotoxin1. In the second part of the thesis work, we showed that ASIC activity can modulate AP generation. ASIC activity by itself can induce trains of APs. In situations in which this activity by itself is not sufficient to induce APs, it can contribute to AP generation. During high neuronal activity, ASIC activity can block already existing trains of APs. In conclusion, depending on the activity of neuron in a particular moment, ASICs can differently modulate AP generation; they can induce, facilitate or inhibit APs. We also showed that trypsin changes the capability of ASICs to modulate AP generation by shifting the pH dependence to more acidic values, which adapts channel gating to pH conditions which may occur in pathological conditions such as ischemia. Our finding that trypsin modifies ASIC1 a function identifies a novel pharmacological tool, and proposes a mechanism of ASIC1a regulation that may have a physiological importance. The identification of the exact site of trypsin action gives insight to the molecular mechanisms of ASIC regulation. This work proposes a role in modulation of AP generation for ASICs in the CNS. RESUME Les canaux ASIC sont les canaux ioniques activés par l'acidification rapide extracellulaire. Activés, ils génèrent un courant entrant qui inactive en présence de stimulus acide. Quatre gènes ASIC ont été clonés, ASIC1, 2, 3 et 4, avec les variants a et b pour ASIC1 et 2. Les ASICs sont exprimés dans les neurones du système nerveux central (SNC) et périphérique (SNP). Dans le SNC, les ASIC ont un rôle dans le mémoire, apprentissage et la mort neuronale dans t'ischémie. Dans le SNP, ils ont un rôle dans la perception de la douleur et méchanosensation. Dans une partie de mon projet de thèse, nous avons étudié les mécanismes de la régulation d'ASIC1a par la sérine-protéase trypsine au niveau moléculaire. La trypsine modifie la fonction d'ASIC1a et pas ASIC1b. Nous avons créé les chimères entre ASIC1 a et 1 b, afin d'identifier la région du canal responsable pour l'effet. Pour identifier le(s) site(s) exactes de l'action de la trypsine, nous avons muté les sites potentiels de la trypsine dans la région identifiée par les chimères. Dans la deuxième partie du projet, nous avons étudié le rôle des ASICs au niveau cellulaire. En utilisant la technique du patch clamp dans les cultures des neurones de l'hippocampe, nous avons étudié l'implication des ASICs dans la génération des potentiels d'action (PA). Nous avons montré que la trypsine agit sur le canal ASIC1a ; elle décale l'activation et « steady-state » inactivation vers les valeurs plus acides, et elle raccourcit le temps du « recovery » du canal. La trypsine coupe ASIC1a sur le résidu K145 et l'effet fonctionnel et la coupure corrèlent. Nous avons identifié la région du canal responsable pour l'inactivation de tous les ASICs ; une partie de cette région est responsable pour ['inhibition d'ASIC1 a par la Psalmotoxinel . Nous avons montré que les ASICs peuvent moduler la génération des PAs. L'activité des ASICs peut induire les trains des PAs. Quand l'activité des ASICs n'est pas suffisante pour induire le PA, elle peut contribuer à sa génération. Pendant l'activité neuronale forte, l'activité des ASICs peut bloquer les trains des PAs qui existent déjà. En conclusion, dépendant de l'activité neuronale, les ASICs peuvent moduler la génération des PAs différemment ; ils peuvent induire, faciliter ou inhiber les PAs. La trypsine change la capacité des ASICs de moduler les PAs. Après l'action de la trypsine, les ASICs peuvent moduler la génération des PAs dans les conditions légèrement acides, suivies par les fluctuations du pH acide, qui peuvent exister dans l'ischémie. Le fait que la trypsine agit sur ASIC1a définit l'outil pharmacologique et propose le mécanisme de la régulation d'ASICI a qui pourrait avoir l'importance physiologique. L'identification du site de l'action de la trypsine éclaircit les mécanismes moléculaires de la régulation des ASICs. Cette étude propose un rôle des ASICs dans la modulation de la génération des PAs. Résumé pour le public large Les neurones sont les cellules de système nerveux dont la fonction est la signalisation. Comme toutes les autres cellules, les neurones ont une membrane qui sépare l'intérieur du milieu extérieur. Cette membrane est imperméable pour des particules chargées (ions). Dans cette membrane existent les protéines spécifiques, « canaux », qui permettent le transport des ions d'un côté de la membrane à l'autre, comme réponse aux stimuli différents. Ce transport des ions à travers la membrane génère un courant, qu'on peut mesurer. Ce courant est la base de la communication entre les neurones, ou, ce qu'on appelle la signalisation neuronale. Quand ce courant est suffisamment grand, il permet la génération du potentiel d'action, qui est le message principal de communication neuronale. Les canaux ASIC (acid-sensing ion channel), que nous étudions dans le laboratoire, sont activés par les acides. Les acides sont relâchés dans beaucoup de situations dans le système nerveux. Les ASIC ont été découverts récemment (en 1996), et nous ne connaissons pas encore très bien toutes les fonctions de ces canaux. Nous savons qu'ils ont un rôle dans le mémoire, apprentissage, la sensation de la douleur et l'infarctus cérébral. Dans la première partie de ce projet de thèse, nous avons voulu mieux comprendre comment fonctionnent ces canaux. Pour faire ça, nous avons étudié la régulation des ASICs par une protéine, trypsine, qui coupe le canal ASIC. Nous avons étudié ou exactement la trypsine coupe le canal et quels effets ça produit sur la fonction du canal. Dans la deuxième partie du projet de thèse, nous avons voulu mieux connaître comment le canal fonctionne au niveau de la cellule, comment il interagit avec les autres canaux et si il a un rôle dans la génération des potentiels d'action. Nous avons pu montrer que la trypsine change la fonction du canal, ce qui lui permet de fonctionner différemment. Nous avons aussi déterminé ou exactement ta trypsine coupe le canal. Au niveau de la cellule, nous avons montré que les ASIC peuvent moduler la génération des potentiels d'action, étant, dépendant de l'activité du neurone, soit activateurs, soit inhibiteurs. La trypsine est une molécule qui peut être libérée dans le système nerveux pendant certaines conditions, comme l'infarctus cérébral. A cause de ça, les connaissances que la trypsine agit sur le anal ASIC pourraient être important physiologiquement. La connaissance de l'endroit exacte ou la trypsine coupe le canal nous aide à mieux comprendre la relation structure-fonction du canal. La modulation de la génération des potentiels d'actions par les ASIC indique que ces canaux peuvent avoir un rôle important dans la signalisation neuronale.
Resumo:
The Mantoverde iron oxide copper-gold (IOCC) district, northern Chile, is known for its Cu production from supergene ores. Recently, exploration outlined an additional hypogene ore resource of 440 Mt with 0.56 percent Cu, and 0.12 g/t An. The hypogene sulfide mineralization occurs mainly as chalcopyrite and pyrite, typically in specularite or magnetite-cemented breccias and associated stockworks. The host rocks underwent variably intense K feldspar alteration, chloritization, sericitization, silicification, and/or carbonatization. A district scale Na(-Ca) alteration is absent. The IOCC mineralization in the district shows a strong tectonic control by northwest- to north-northwest-trending brittle structures. Large Cu sulfide-rich veins or Cu sulfide-cemented breccias are absent. Therefore, head grades of 4 percent Cu are an exception. There is a positive correlation between Cu and An grades. Gold is probably contained mostly in chalcopyrite and pyrite. Elevated concentrations of light rare-earth elements (LREE) occur locally but are attributed to redistribution of LREE within the deposits rather than to derivation from external sources. The Cu-Au ores in the Mantoverde district are low in and have relatively low contents in heavy metals that are potentially hazardous to the environment, such as As (avg 14 ppm), Hg (<5 ppm), or Cd (<0.2 ppm). The sulfur isotope ratios of chalcopyrite from the IOCC deposits lie between -5.6 and 8.9 per mil delta(34)S(VCDT). They show systematic variations within the district, which are interpreted to reflect relative distance to inferred fluid conduits and the level of deposition within the hydrothermal system. Most initial (87)Sr/(86)Sr values of altered volcanic rocks and hydrothermal calcite from the Mantoverde district are between 0.7031 and 0.7060 and are similar to those of the igneous rocks of the region. Lead isotope ratios of chalcopyrite are consistent with Pb (and by inference Cu) derived from Early Cretaceous magmatism. The sulfur, strontium, and lead isotope data of chalcopyrite, calcite gangue, or altered host rocks, respectively, are compatible with a genetic model that involves cooling of metal and sulfur-bearing magmatic-hydrothermal fluids that mix with meteoric waters or seawater at relatively shallow crustal levels. An additional exotic sulfur input is likely, though not required, for the copper mineralization. Apart from the IOCC. deposits, there are a number of smaller magnetite(-apatite) bodies in the district. These are geologically similar to the Cu-Au-bearing magnetite bodies, but are related to splays of the north-south-trending Atacama fault zone and differ in alteration and texture.
Resumo:
Purpose. This study was conducted to determine whether newer infrared or laser welding technologies created joints superior to traditional furnace or torch soldering methods of joining metals. It was designed to assess the mechanical resistance, the characteristics of the fractured surfaces, and the elemental diffusion of joints obtained by four different techniques: (1) preceramic soldering with a propane-oxygen torch, (2) postceramic soldering with a porcelain furnace, (3) preceramic and (4) postceramic soldering with an infrared heat source, and (5) laser welding. Material and methods. Mechanical resistance was determined by measuring the ultimate tensile strength of the joint and by determining their resistance to fatigue loading. Elemental diffusion to and from the joint was assessed with microprobe tracings. Scanning electron microscopy micrographs of the fractured surface were also obtained and evaluated. Results. Under monotonic tensile stress, three groups emerged: The laser welds were the strongest, the preceramic joints ranged second, and the postceramic joints were the weakest. Under fatigue stress, the order was as follows: first, the preceramic joints, and second, a group that comprised both postceramic joints and the laser welds. Inspection of the fractographs revealed several fracture modes but no consistent pattern emerged. Microprobe analyses demonstrated minor diffusion processes in the preceramic joints, whereas significant diffusion was observed in the postceramic joints. Clinical Implications. The mechanical resistance data conflicted as to the strength that could be expected of laser welded joints. On the basis of fatigue resistance of the joints, neither infrared solder joints nor laser welds were stronger than torch or furnace soldered joints.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal Na(+) channels that belong to the epithelial Na(+) channel/degenerin family. ASICs are transiently activated by a rapid drop in extracellular pH. Conditions of low extracellular pH, such as ischemia and inflammation in which ASICs are thought to be active, are accompanied by increased protease activity. We show here that serine proteases modulate the function of ASIC1a and ASIC1b but not of ASIC2a and ASIC3. We show that protease exposure shifts the pH dependence of ASIC1a activation and steady-state inactivation to more acidic pH. As a consequence, protease exposure leads to a decrease in current response if ASIC1a is activated by a pH drop from pH 7.4. If, however, acidification occurs from a basal pH of approximately 7, protease-exposed ASIC1a shows higher activity than untreated ASIC1a. We provide evidence that this bi-directional regulation of ASIC1a function also occurs in neurons. Thus, we have identified a mechanism that modulates ASIC function and may allow ASIC1a to adapt its gating to situations of persistent extracellular acidification.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal Na(+)-selective channels that are transiently activated by extracellular acidification. ASICs are involved in fear and anxiety, learning, neurodegeneration after ischemic stroke, and pain sensation. The small molecule 2-guanidine-4-methylquinazoline (GMQ) was recently shown to open ASIC3 at physiological pH. We have investigated the mechanisms underlying this effect and the possibility that GMQ may alter the function of other ASICs besides ASIC3. GMQ shifts the pH dependence of activation to more acidic pH in ASIC1a and ASIC1b, whereas in ASIC3 this shift goes in the opposite direction and is accompanied by a decrease in its steepness. GMQ also induces an acidic shift of the pH dependence of inactivation of ASIC1a, -1b, -2a, and -3. As a consequence, the activation and inactivation curves of ASIC3 but not other ASICs overlap in the presence of GMQ at pH 7.4, thereby creating a window current. At concentrations >1 mm, GMQ decreases maximal peak currents by reducing the unitary current amplitude. Mutation of residue Glu-79 in the palm domain of ASIC3, previously shown to be critical for channel opening by GMQ, disrupted the GMQ effects on inactivation but not activation. This suggests that this residue is involved in the consequences of GMQ binding rather than in the binding interaction itself. This study describes the mechanisms underlying the effects of a novel class of ligands that modulate the function of all ASICs as well as activate ASIC3 at physiological pH.
Resumo:
The Navachab gold mine in the Damara belt of central Namibia is characterized by a polymetallic Au-Bi-As-Cu-Ag ore assemblage, including pyrrhotite, chalcopyrite, sphalerite, arsenopyrite, bismuth, gold, bismuthinite, and bismuth tellurides. Gold is hosted by quartz sulfide veins and semimassive sulfide lenses that are developed in a near-vertical sequence of shelf-type metasedimentary rocks, including marble, calcsilicate rock, and biotite schist. The sequence has been intruded by abundant syntectonic lamprophyre, aplite, and pegmatite dikes, documenting widespread igneous activity coeval with mineralization. The majority of quartz from the veins has delta(18)O values of 14 to 15 per mil (V-SMOW). The total variations in delta(18)O values of the biotite schist and calcsilicate rock are relatively small (12-14 parts per thousand), whereas the marble records steep gradients in delta(18)O values (17-21 parts per thousand), the lowest values being recorded at the vein margins. Despite this, there is no correlation between delta(18)O and delta(13)C values and the carbonate content of the rocks, indicating that fluid-rock interaction alone cannot explain the isotopic gradients. In addition, the marble records increased delta(13)C values at the contact to the veins, possibly related to a change in the physicochemical conditions during fluid-rock interaction. Gold is interpreted to have precipitated in equilibrium with metamorphic find (delta(18)O 12-14 parts per thousand; delta D = -40 to -60 parts per thousand) at peak metamorphic conditions of ca. 550 degrees C and 2 kbars, consistent with isotopic fractionations between coexisting calcite, garnet, and clinopyroxene in the alteration halos. The most likely source of the mineralizing fluid was a midcrustal fluid in equilibrium with the Damaran metapelites that underwent prograde metamorphism at amphibolite- to granulite-facies grades. Although there is no isotopic evidence for the contribution of magmatic fluids, they may have been important in contributing to the overall hydraulic regime and high apparent geothermal gradients (ca. 80 degrees C/km(-1)) in the mine area.
Resumo:
Acute myocarditis was until recently one of the most difficult diagnoses in cardiology. The spectrum of signs and symptoms is very wide, the usual non-invasive tests lack specificity and the myocardial biopsy is only performed in a minority of cases to confirm the diagnosis. Due to its unique ability to directly image myocardial necrosis, fibrosis and oedema, cardiac magnetic resonance (CMR) is now considered the primary tool for noninvasive assessment of patients with suspected myocarditis. CMR is also useful for monitoring disease activity under treatment. Myocarditis has been associated with the development of dilated cardiomyopathy; CMR could play a role in the follow-up of such cases to detect the progression toward a dilatative phenotype. Precise mapping of myocardial lesions with cardiac MRI is invaluable to guide myocardial biopsy and increase its diagnostic yield by improving sensitivity.
Resumo:
In recent years, elevated arsenic concentrations have been found in waters and soils of many, countries, often resulting in a health threat for the local population. Switzerland is not an exception and this paper deals with the release and subsequent fate of arsenic in a 200-km(2) mountainous watershed, characterized by crystalline silicate rocks (gneisses, schists, amphibolites) that contain abundant As-bearing sulfide ore deposits, some of which have been mined for iron and gold in the past. Using analytical methods common for mineralogical, ground water and soil studies (XRD, XRF, XAS-XANES and -EXAFS, electron microprobe, extraction, ICP, AAS with hydride generator, ion chromatography), seven different field situations and related dispersion processes of natural arsenic have been studied: (1) release by rock weathering, (2) transport and deposition by water and ice; (3) release of As to the ground and surface water due to increasing pH; (4) accumulation in humic soil horizons; (5) remobilization by reduction in water-saturated soils and stagnant ground waters; (6) remobilization by using P-rich fertilizers or dung and (7) oxidation, precipitation and dilution in surface waters. Comparison of the results with experimental adsorption studies and speciation diagrams from the literature allows us to reconstruct and identify the typical behavior of arsenic in a natural environment under temperate climatic conditions. The main parameters identified are: (a) once liberated from the primary minerals, sorption processes on Fe-oxy-hydroxides dominate over Al-phases, such as Al-hydroxides or clay minerals and limit the As concentrations in the spring and well waters between 20 and 300 mug/l. (b) Precipitation as secondary minerals is limited to the weathering domain, where the As concentrations are still high and not yet too diluted by rain and soils waters. (c) Although neutral and alkaline pH conditions clearly increase the mobility of As, the main factor to mobilize As is a low redox potential (Eh close or below 0 mV), which favors the dissolution of the Fe-oxy-hydroxides on which the As is sorbed. (d) X-ray absorption spectroscopy (XAS) of As in water-logged humic forest soils indicates that the reduction to As III only occurs at the solid-water interface and that the solid contains As as As V (e) A and Bh horizons of humic cambisols can effectively capture As when As-rich waters flow through them. Complex spatial and temporal variation of the various parameters in a watershed results in repeated mobilization and immobilization of As, which continuously transports As from the upper to the lower part of a watershed and ultimately to the ocean. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Acute brain slices are slices of brain tissue that are kept vital in vitro for further recordings and analyses. This tool is of major importance in neurobiology and allows the study of brain cells such as microglia, astrocytes, neurons and their inter/intracellular communications via ion channels or transporters. In combination with light/fluorescence microscopies, acute brain slices enable the ex vivo analysis of specific cells or groups of cells inside the slice, e.g. astrocytes. To bridge ex vivo knowledge of a cell with its ultrastructure, we developed a correlative microscopy approach for acute brain slices. The workflow begins with sampling of the tissue and precise trimming of a region of interest, which contains GFP-tagged astrocytes that can be visualised by fluorescence microscopy of ultrathin sections. The astrocytes and their surroundings are then analysed by high resolution scanning transmission electron microscopy (STEM). An important aspect of this workflow is the modification of a commercial cryo-ultramicrotome to observe the fluorescent GFP signal during the trimming process. It ensured that sections contained at least one GFP astrocyte. After cryo-sectioning, a map of the GFP-expressing astrocytes is established and transferred to correlation software installed on a focused ion beam scanning electron microscope equipped with a STEM detector. Next, the areas displaying fluorescence are selected for high resolution STEM imaging. An overview area (e.g. a whole mesh of the grid) is imaged with an automated tiling and stitching process. In the final stitched image, the local organisation of the brain tissue can be surveyed or areas of interest can be magnified to observe fine details, e.g. vesicles or gold labels on specific proteins. The robustness of this workflow is contingent on the quality of sample preparation, based on Tokuyasu's protocol. This method results in a reasonable compromise between preservation of morphology and maintenance of antigenicity. Finally, an important feature of this approach is that the fluorescence of the GFP signal is preserved throughout the entire preparation process until the last step before electron microscopy.
Resumo:
The annual meeting of the French Ion Channels Society, held on the Mediterranean coast of France, is aimed at gathering the international scientific community working on various aspects of ion channels. In this report of the 19th edition of the meeting, held in September 2008, we summarize selected symposia on aspects of the ion channel field from fundamental to clinical research. The meeting is an opportunity for leading investigators as well as young researchers to present and discuss their recent advances and future challenges in the ion channel field.
Resumo:
Since the end of the last millennium, the focused ion beam scanning electron microscopy (FIB-SEM) has progressively found use in biological research. This instrument is a scanning electron microscope (SEM) with an attached gallium ion column and the 2 beams, electrons and ions (FIB) are focused on one coincident point. The main application is the acquisition of three-dimensional data, FIB-SEM tomography. With the ion beam, some nanometres of the surface are removed and the remaining block-face is imaged with the electron beam in a repetitive manner. The instrument can also be used to cut open biological structures to get access to internal structures or to prepare thin lamella for imaging by (cryo-) transmission electron microscopy. Here, we will present an overview of the development of FIB-SEM and discuss a few points about sample preparation and imaging.
Resumo:
ATP-gated P2X receptors and acid-sensing ion channels are two distinct ligand-gated ion channels that assemble into trimers. They are involved in many important physiological functions such as pain sensation and are recognized as important therapeutic targets. They have unrelated primary structures and respond to different ligands (ATP and protons) and are thus considered as two different ion channels. As a consequence, comparisons of the biophysical properties and underlying mechanisms have only been rarely made between these two channels. However, the recent determination of their molecular structures by X-ray crystallography has revealed unexpected parallels in the architecture of the two pores, providing a basis for possible functional analogies. In this review, we analyze the structural and functional similarities that are shared by these trimeric ion channels, and we outline key unanswered questions that, if addressed experimentally, may help us to elucidate how two unrelated ion channels have adopted a similar fold of the pore.
Resumo:
Purpose:To identify the gene causing rod-cone dystrophy/amelogenesis imperfecta Methods:Homozygosity mapping was performed using the Affymetrix 50K XbaI array in one family and candidate genes in the linked interval were sequenced with ABI Dye Terminator, vers. 1 in the index patient of 3 families. The identified mutations were screened in normal control individuals. Expression analyses were performed on RNA extracted from the brain, various parts of the eye and teeth; immunostaining was done on mouse eyes and jaw and knock-down experiments were carried out in zebrafish embroys. Results:Sequencing the coding regions of ancient conserved domain protein 4 (CNNM4), a metal ions transporter, revealed a 1-base pair duplication (p.L438fs) in family A, a p.R236Q mutation in family B and a p.L324P in family C. All these mutations were homozygous and involved very conserved amino acids in paralogs and orthologs. Immunostaining and RT-PCR confirmed that CNNM4 was strongly expressed in various parts of the eye and in the teeth. Morpholino experiments in zebrafish showed a loss of ganglion cells at 5 days post fertilization. Conclusions:The rod-cone dystrophy/amelogenesis imperfecta syndrome is caused by mutation in CNNM4 and is due to aberrant metal ion homeostasis.