27 resultados para Genetic Algorithm for Rule-Set Prediction (GARP)
Resumo:
Background and aim of the study: Genomic gains and losses play a crucial role in the development and progression of DLBCL and are closely related to gene expression profiles (GEP), including the germinal center B-cell like (GCB) and activated B-cell like (ABC) cell of origin (COO) molecular signatures. To identify new oncogenes or tumor suppressor genes (TSG) involved in DLBCL pathogenesis and to determine their prognostic values, an integrated analysis of high-resolution gene expression and copy number profiling was performed. Patients and methods: Two hundred and eight adult patients with de novo CD20+ DLBCL enrolled in the prospective multicentric randomized LNH-03 GELA trials (LNH03-1B, -2B, -3B, 39B, -5B, -6B, -7B) with available frozen tumour samples, centralized reviewing and adequate DNA/RNA quality were selected. 116 patients were treated by Rituximab(R)-CHOP/R-miniCHOP and 92 patients were treated by the high dose (R)-ACVBP regimen dedicated to patients younger than 60 years (y) in frontline. Tumour samples were simultaneously analysed by high resolution comparative genomic hybridization (CGH, Agilent, 144K) and gene expression arrays (Affymetrix, U133+2). Minimal common regions (MCR), as defined by segments that affect the same chromosomal region in different cases, were delineated. Gene expression and MCR data sets were merged using Gene expression and dosage integrator algorithm (GEDI, Lenz et al. PNAS 2008) to identify new potential driver genes. Results: A total of 1363 recurrent (defined by a penetrance > 5%) MCRs within the DLBCL data set, ranging in size from 386 bp, affecting a single gene, to more than 24 Mb were identified by CGH. Of these MCRs, 756 (55%) showed a significant association with gene expression: 396 (59%) gains, 354 (52%) single-copy deletions, and 6 (67%) homozygous deletions. By this integrated approach, in addition to previously reported genes (CDKN2A/2B, PTEN, DLEU2, TNFAIP3, B2M, CD58, TNFRSF14, FOXP1, REL...), several genes targeted by gene copy abnormalities with a dosage effect and potential physiopathological impact were identified, including genes with TSG activity involved in cell cycle (HACE1, CDKN2C) immune response (CD68, CD177, CD70, TNFSF9, IRAK2), DNA integrity (XRCC2, BRCA1, NCOR1, NF1, FHIT) or oncogenic functions (CD79b, PTPRT, MALT1, AUTS2, MCL1, PTTG1...) with distinct distribution according to COO signature. The CDKN2A/2B tumor suppressor locus (9p21) was deleted homozygously in 27% of cases and hemizygously in 9% of cases. Biallelic loss was observed in 49% of ABC DLBCL and in 10% of GCB DLBCL. This deletion was strongly correlated to age and associated to a limited number of additional genetic abnormalities including trisomy 3, 18 and short gains/losses of Chr. 1, 2, 19 regions (FDR < 0.01), allowing to identify genes that may have synergistic effects with CDKN2A/2B inactivation. With a median follow-up of 42.9 months, only CDKN2A/2B biallelic deletion strongly correlates (FDR p.value < 0.01) to a poor outcome in the entire cohort (4y PFS = 44% [32-61] respectively vs. 74% [66-82] for patients in germline configuration; 4y OS = 53% [39-72] vs 83% [76-90]). In a Cox proportional hazard prediction of the PFS, CDKN2A/2B deletion remains predictive (HR = 1.9 [1.1-3.2], p = 0.02) when combined with IPI (HR = 2.4 [1.4-4.1], p = 0.001) and GCB status (HR = 1.3 [0.8-2.3], p = 0.31). This difference remains predictive in the subgroup of patients treated by R-CHOP (4y PFS = 43% [29-63] vs. 66% [55-78], p=0.02), in patients treated by R-ACVBP (4y PFS = 49% [28-84] vs. 83% [74-92], p=0.003), and in GCB (4y PFS = 50% [27-93] vs. 81% [73-90], p=0.02), or ABC/unclassified (5y PFS = 42% [28-61] vs. 67% [55-82] p = 0.009) molecular subtypes (Figure 1). Conclusion: We report for the first time an integrated genetic analysis of a large cohort of DLBCL patients included in a prospective multicentric clinical trial program allowing identifying new potential driver genes with pathogenic impact. However CDKN2A/2B deletion constitutes the strongest and unique prognostic factor of chemoresistance to R-CHOP, regardless the COO signature, which is not overcome by a more intensified immunochemotherapy. Patients displaying this frequent genomic abnormality warrant new and dedicated therapeutic approaches.
Resumo:
Prediction of species' distributions is central to diverse applications in ecology, evolution and conservation science. There is increasing electronic access to vast sets of occurrence records in museums and herbaria, yet little effective guidance on how best to use this information in the context of numerous approaches for modelling distributions. To meet this need, we compared 16 modelling methods over 226 species from 6 regions of the world, creating the most comprehensive set of model comparisons to date. We used presence-only data to fit models, and independent presence-absence data to evaluate the predictions. Along with well-established modelling methods such as generalised additive models and GARP and BIOCLIM, we explored methods that either have been developed recently or have rarely been applied to modelling species' distributions. These include machine-learning methods and community models, both of which have features that may make them particularly well suited to noisy or sparse information, as is typical of species' occurrence data. Presence-only data were effective for modelling species' distributions for many species and regions. The novel methods consistently outperformed more established methods. The results of our analysis are promising for the use of data from museums and herbaria, especially as methods suited to the noise inherent in such data improve.
Resumo:
Le "Chest wall syndrome" (CWS) est défini comme étant une source bénigne de douleurs thoraciques, localisées sur la paroi thoracique antérieure et provoquées par une affection musculosquelettique. Le CWS représente la cause la plus fréquente de douleurs thoraciques en médecine de premier recours. Le but de cette étude est de développer et valider un score de prédiction clinique pour le CWS. Une revue de la littérature a d'abord été effectuée, d'une part pour savoir si un tel score existait déjà, et d'autre part pour retrouver les variables décrites comme étant prédictives d'un CWS. Le travail d'analyse statistique a été effectué avec les données issues d'une cohorte clinique multicentrique de patients qui avaient consulté en médecine de premier recours en Suisse romande avec une douleur thoracique (59 cabinets, 672 patients). Un diagnostic définitif avait été posé à 12 mois de suivi. Les variables pertinentes ont été sélectionnées par analyses bivariées, et le score de prédiction clinique a été développé par régression logistique multivariée. Une validation externe de ce score a été faite en utilisant les données d'une cohorte allemande (n= 1212). Les analyses bivariées ont permis d'identifier 6 variables caractérisant le CWS : douleur thoracique (ni rétrosternale ni oppressive), douleur en lancées, douleur bien localisée, absence d'antécédent de maladie coronarienne, absence d'inquiétude du médecin et douleur reproductible à la palpation. Cette dernière variable compte pour 2 points dans le score, les autres comptent pour 1 point chacune; le score total s'étend donc de 0 à 7 points. Dans la cohorte de dérivation, l'aire sous la courbe sensibilité/spécificité (courbe ROC) est de 0.80 (95% de l'intervalle de confiance : 0.76-0.83). Avec un seuil diagnostic de > 6 points, le score présente 89% de spécificité et 45% de sensibilité. Parmi tous les patients qui présentaient un CWS (n = 284), 71% (n = 201) avaient une douleur reproductible à la palpation et 45% (n= 127) sont correctement diagnostiqués par le score. Pour une partie (n = 43) de ces patients souffrant de CWS et correctement classifiés, 65 investigations complémentaires (30 électrocardiogrammes, 16 radiographies du thorax, 10 analyses de laboratoire, 8 consultations spécialisées, et une tomodensitométrie thoracique) avaient été réalisées pour parvenir au diagnostic. Parmi les faux positifs (n = 41), on compte trois angors stables (1.8% de tous les positifs). Les résultats de la validation externe sont les suivants : une aire sous la courbe ROC de 0.76 (95% de l'intervalle de confiance : 0.73-0.79) avec une sensibilité de 22% et une spécificité de 93%. Ce score de prédiction clinique pour le CWS constitue un complément utile à son diagnostic, habituellement obtenu par exclusion. En effet, pour les 127 patients présentant un CWS et correctement classifiés par notre score, 65 investigations complémentaires auraient pu être évitées. Par ailleurs, la présence d'une douleur thoracique reproductible à la palpation, bien qu'étant sa plus importante caractéristique, n'est pas pathognomonique du CWS.
Resumo:
BACKGROUND: Chest pain can be caused by various conditions, with life-threatening cardiac disease being of greatest concern. Prediction scores to rule out coronary artery disease have been developed for use in emergency settings. We developed and validated a simple prediction rule for use in primary care. METHODS: We conducted a cross-sectional diagnostic study in 74 primary care practices in Germany. Primary care physicians recruited all consecutive patients who presented with chest pain (n = 1249) and recorded symptoms and findings for each patient (derivation cohort). An independent expert panel reviewed follow-up data obtained at six weeks and six months on symptoms, investigations, hospital admissions and medications to determine the presence or absence of coronary artery disease. Adjusted odds ratios of relevant variables were used to develop a prediction rule. We calculated measures of diagnostic accuracy for different cut-off values for the prediction scores using data derived from another prospective primary care study (validation cohort). RESULTS: The prediction rule contained five determinants (age/sex, known vascular disease, patient assumes pain is of cardiac origin, pain is worse during exercise, and pain is not reproducible by palpation), with the score ranging from 0 to 5 points. The area under the curve (receiver operating characteristic curve) was 0.87 (95% confidence interval [CI] 0.83-0.91) for the derivation cohort and 0.90 (95% CI 0.87-0.93) for the validation cohort. The best overall discrimination was with a cut-off value of 3 (positive result 3-5 points; negative result <or= 2 points), which had a sensitivity of 87.1% (95% CI 79.9%-94.2%) and a specificity of 80.8% (77.6%-83.9%). INTERPRETATION: The prediction rule for coronary artery disease in primary care proved to be robust in the validation cohort. It can help to rule out coronary artery disease in patients presenting with chest pain in primary care.
Resumo:
BACKGROUND: The Marburg Heart Score (MHS) aims to assist GPs in safely ruling out coronary heart disease (CHD) in patients presenting with chest pain, and to guide management decisions. AIM: To investigate the diagnostic accuracy of the MHS in an independent sample and to evaluate the generalisability to new patients. DESIGN AND SETTING: Cross-sectional diagnostic study with delayed-type reference standard in general practice in Hesse, Germany. METHOD: Fifty-six German GPs recruited 844 males and females aged ≥ 35 years, presenting between July 2009 and February 2010 with chest pain. Baseline data included the items of the MHS. Data on the subsequent course of chest pain, investigations, hospitalisations, and medication were collected over 6 months and were reviewed by an independent expert panel. CHD was the reference condition. Measures of diagnostic accuracy included the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, likelihood ratios, and predictive values. RESULTS: The AUC was 0.84 (95% confidence interval [CI] = 0.80 to 0.88). For a cut-off value of 3, the MHS showed a sensitivity of 89.1% (95% CI = 81.1% to 94.0%), a specificity of 63.5% (95% CI = 60.0% to 66.9%), a positive predictive value of 23.3% (95% CI = 19.2% to 28.0%), and a negative predictive value of 97.9% (95% CI = 96.2% to 98.9%). CONCLUSION: Considering the diagnostic accuracy of the MHS, its generalisability, and ease of application, its use in clinical practice is recommended.
Resumo:
Voxel-based morphometry from conventional T1-weighted images has proved effective to quantify Alzheimer's disease (AD) related brain atrophy and to enable fairly accurate automated classification of AD patients, mild cognitive impaired patients (MCI) and elderly controls. Little is known, however, about the classification power of volume-based morphometry, where features of interest consist of a few brain structure volumes (e.g. hippocampi, lobes, ventricles) as opposed to hundreds of thousands of voxel-wise gray matter concentrations. In this work, we experimentally evaluate two distinct volume-based morphometry algorithms (FreeSurfer and an in-house algorithm called MorphoBox) for automatic disease classification on a standardized data set from the Alzheimer's Disease Neuroimaging Initiative. Results indicate that both algorithms achieve classification accuracy comparable to the conventional whole-brain voxel-based morphometry pipeline using SPM for AD vs elderly controls and MCI vs controls, and higher accuracy for classification of AD vs MCI and early vs late AD converters, thereby demonstrating the potential of volume-based morphometry to assist diagnosis of mild cognitive impairment and Alzheimer's disease.
Resumo:
The cross-recognition of peptides by cytotoxic T lymphocytes is a key element in immunology and in particular in peptide based immunotherapy. Here we develop three-dimensional (3D) quantitative structure-activity relationships (QSARs) to predict cross-recognition by Melan-A-specific cytotoxic T lymphocytes of peptides bound to HLA A*0201 (hereafter referred to as HLA A2). First, we predict the structure of a set of self- and pathogen-derived peptides bound to HLA A2 using a previously developed ab initio structure prediction approach [Fagerberg et al., J. Mol. Biol., 521-46 (2006)]. Second, shape and electrostatic energy calculations are performed on a 3D grid to produce similarity matrices which are combined with a genetic neural network method [So et al., J. Med. Chem., 4347-59 (1997)] to generate 3D-QSAR models. The models are extensively validated using several different approaches. During the model generation, the leave-one-out cross-validated correlation coefficient (q (2)) is used as the fitness criterion and all obtained models are evaluated based on their q (2) values. Moreover, the best model obtained for a partitioned data set is evaluated by its correlation coefficient (r = 0.92 for the external test set). The physical relevance of all models is tested using a functional dependence analysis and the robustness of the models obtained for the entire data set is confirmed using y-randomization. Finally, the validated models are tested for their utility in the setting of rational peptide design: their ability to discriminate between peptides that only contain side chain substitutions in a single secondary anchor position is evaluated. In addition, the predicted cross-recognition of the mono-substituted peptides is confirmed experimentally in chromium-release assays. These results underline the utility of 3D-QSARs in peptide mimetic design and suggest that the properties of the unbound epitope are sufficient to capture most of the information to determine the cross-recognition.
Resumo:
Context: Ovarian tumors (OT) typing is a competency expected from pathologists, with significant clinical implications. OT however come in numerous different types, some rather rare, with the consequence of few opportunities for practice in some departments. Aim: Our aim was to design a tool for pathologists to train in less common OT typing. Method and Results: Representative slides of 20 less common OT were scanned (Nano Zoomer Digital Hamamatsu®) and the diagnostic algorithm proposed by Young and Scully applied to each case (Young RH and Scully RE, Seminars in Diagnostic Pathology 2001, 18: 161-235) to include: recognition of morphological pattern(s); shortlisting of differential diagnosis; proposition of relevant immunohistochemical markers. The next steps of this project will be: evaluation of the tool in several post-graduate training centers in Europe and Québec; improvement of its design based on evaluation results; diffusion to a larger public. Discussion: In clinical medicine, solving many cases is recognized as of utmost importance for a novice to become an expert. This project relies on the virtual slides technology to provide pathologists with a learning tool aimed at increasing their skills in OT typing. After due evaluation, this model might be extended to other uncommon tumors.
Resumo:
BACKGROUND: Obesity is strongly associated with major depressive disorder (MDD) and various other diseases. Genome-wide association studies have identified multiple risk loci robustly associated with body mass index (BMI). In this study, we aimed to investigate whether a genetic risk score (GRS) combining multiple BMI risk loci might have utility in prediction of obesity in patients with MDD. METHODS: Linear and logistic regression models were conducted to predict BMI and obesity, respectively, in three independent large case-control studies of major depression (Radiant, GSK-Munich, PsyCoLaus). The analyses were first performed in the whole sample and then separately in depressed cases and controls. An unweighted GRS was calculated by summation of the number of risk alleles. A weighted GRS was calculated as the sum of risk alleles at each locus multiplied by their effect sizes. Receiver operating characteristic (ROC) analysis was used to compare the discriminatory ability of predictors of obesity. RESULTS: In the discovery phase, a total of 2,521 participants (1,895 depressed patients and 626 controls) were included from the Radiant study. Both unweighted and weighted GRS were highly associated with BMI (P <0.001) but explained only a modest amount of variance. Adding 'traditional' risk factors to GRS significantly improved the predictive ability with the area under the curve (AUC) in the ROC analysis, increasing from 0.58 to 0.66 (95% CI, 0.62-0.68; χ(2) = 27.68; P <0.0001). Although there was no formal evidence of interaction between depression status and GRS, there was further improvement in AUC in the ROC analysis when depression status was added to the model (AUC = 0.71; 95% CI, 0.68-0.73; χ(2) = 28.64; P <0.0001). We further found that the GRS accounted for more variance of BMI in depressed patients than in healthy controls. Again, GRS discriminated obesity better in depressed patients compared to healthy controls. We later replicated these analyses in two independent samples (GSK-Munich and PsyCoLaus) and found similar results. CONCLUSIONS: A GRS proved to be a highly significant predictor of obesity in people with MDD but accounted for only modest amount of variance. Nevertheless, as more risk loci are identified, combining a GRS approach with information on non-genetic risk factors could become a useful strategy in identifying MDD patients at higher risk of developing obesity.
Resumo:
Given the cost constraints of the European health-care systems, criteria are needed to decide which genetic services to fund from the public budgets, if not all can be covered. To ensure that high-priority services are available equitably within and across the European countries, a shared set of prioritization criteria would be desirable. A decision process following the accountability for reasonableness framework was undertaken, including a multidisciplinary EuroGentest/PPPC-ESHG workshop to develop shared prioritization criteria. Resources are currently too limited to fund all the beneficial genetic testing services available in the next decade. Ethically and economically reflected prioritization criteria are needed. Prioritization should be based on considerations of medical benefit, health need and costs. Medical benefit includes evidence of benefit in terms of clinical benefit, benefit of information for important life decisions, benefit for other people apart from the person tested and the patient-specific likelihood of being affected by the condition tested for. It may be subject to a finite time window. Health need includes the severity of the condition tested for and its progression at the time of testing. Further discussion and better evidence is needed before clearly defined recommendations can be made or a prioritization algorithm proposed. To our knowledge, this is the first time a clinical society has initiated a decision process about health-care prioritization on a European level, following the principles of accountability for reasonableness. We provide points to consider to stimulate this debate across the EU and to serve as a reference for improving patient management.
Resumo:
BACKGROUND AND AIMS: Parental history (PH) and genetic risk scores (GRSs) are separately associated with coronary heart disease (CHD), but evidence regarding their combined effects is lacking. We aimed to evaluate the joint associations and predictive ability of PH and GRSs for incident CHD. METHODS: Data for 4283 Caucasians were obtained from the population-based CoLaus Study, over median follow-up time of 5.6 years. CHD was defined as incident myocardial infarction, angina, percutaneous coronary revascularization or bypass grafting. Single nucleotide polymorphisms for CHD identified by genome-wide association studies were used to construct unweighted and weighted versions of three GRSs, comprising of 38, 53 and 153 SNPs respectively. RESULTS: PH was associated with higher values of all weighted GRSs. After adjustment for age, sex, smoking, diabetes, systolic blood pressure, low and high density lipoprotein cholesterol, PH was significantly associated with CHD [HR 2.61, 95% CI (1.47-4.66)] and further adjustment for GRSs did not change this estimate. Similarly, one standard deviation change of the weighted 153-SNPs GRS was significantly associated with CHD [HR 1.50, 95% CI (1.26-1.80)] and remained so, after further adjustment for PH. The weighted, 153-SNPs GRS, but not PH, modestly improved discrimination [(C-index improvement, 0.016), p = 0.048] and reclassification [(NRI improvement, 8.6%), p = 0.027] beyond cardiovascular risk factors. After including both the GRS and PH, model performance improved further [(C-index improvement, 0.022), p = 0.006]. CONCLUSION: After adjustment for cardiovascular risk factors, PH and a weighted, polygenic GRS were jointly associated with CHD and provided additive information for coronary events prediction.