129 resultados para GENETIC-ANALYSIS
Resumo:
Every spring, workers of the Argentine Ant Linepithema humile kill a large proportion of queens within their nests, Although this behaviour inflicts a high energetic cost oil the colonies, its biological significance has remained elusive so far. An earlier study showed that the probability of a queen being executed is not related to her weight, fecundity, or age. Here we test the hypothesis that workers collectively eliminate queens to which they are less related, thereby increasing their inclusive fitness. We found no evidence for this hypothesis. Workers of a nest were on average not significantly less related to executed queens than to surviving ones. Moreover, a population genetic analysis revealed that workers were not genetically differentiated between nests. This means that workers of a given nest are equally related to any queen in the population and that there can be no increase in average worker-queen relatedness by selective elimination of queens. Finally, our genetic analyses also showed that, in contrast to workers, queens were significantly genetically differentiated between nests and that there was significant isolation by distance for queens.
Resumo:
In the fission yeast Schizosaccharomyces pombe, septum formation and cytokinesis are dependent upon the initiation, though not the completion of mitosis. A number of cell cycle mutants which show phenotypes consistent with a defect in the regulation of septum formation have been isolated. A mutation in the S. pombe cdc16 gene leads to the formation of multiple septa without cytokinesis, suggesting that the normal mechanisms that limit the cell to the formation of a single septum in each cycle do not operate. Mutations in the S. pombe early septation mutants cdc7, cdc11, cdc14 and cdc15 lead to the formation of elongated, multinucleate cells, as a result of S phase and mitosis continuing in the absence of cytokinesis. This suggests that in these cells, the normal mechanisms which initiate cytokinesis are defective and that they are unable to respond to this by preventing further nuclear cycles. Genetic analysis has implied that the products of some of these genes may interact with that of the cdc16 gene. To understand how the processes of septation and cytokinesis are regulated and coordinated with mitosis we are studying the early septation mutants and cdc16. In this paper, we present the cloning and analysis of the cdc16 gene. Deletion of the gene shows that it is essential for cell proliferation: spores lacking a functional cdc16 gene germinate, complete mitosis and form multiple septa without undergoing cell cleavage.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Neonatal diabetes mellitus can be transient or permanent. The severe form of permanent neonatal diabetes mellitus can be associated with pancreas agenesis. Normal pancreas development is controlled by a cascade of transcription factors, where insulin promoter factor 1 (IPF1) plays a crucial role. Here, we describe two novel mutations in the IPF1 gene leading to pancreas agenesis. Direct sequence analysis of exons 1 and 2 of the IPF1 gene revealed two point mutations within the homeobox in exon 2. Genetic analysis of the parents showed that each mutation was inherited from one parent. Mutations localized in helices 1 and 2, respectively, of the homeodomain, decreased the protein half-life significantly, leading to intracellular IPF1 levels of 36% and 27% of wild-type levels. Both mutant forms of IPF1 were normally translocated to the nucleus, and their DNA binding activity on different known target promoters was similar to that of the wild-type protein. However, transcriptional activity of both mutant IPF1 proteins, alone or in combination with HNF3 beta/Foxa2, Pbx1, or the heterodimer E47-beta 2 was reduced, findings accounted for by decreased IPF1 steady state levels and not by impaired protein-protein interactions. We conclude that the IPF1 level is critical for human pancreas formation.
Resumo:
Less than 50 patients are reported with platelet type von Willebrand disease (PT-VWD) worldwide. Several reports have discussed the diagnostic challenge of this disease versus the closely similar disorder type 2B VWD. However, no systematic study has evaluated this dilemma globally. Over three years, a total of 110 samples/data from eight countries were analysed. A molecular approach was utilised, analysing exon 28 of the von Willebrand factor (VWF) gene, and in mutation negative cases the platelet GP1BA gene. Our results show that 48 cases initially diagnosed as putative type 2B/PT-VWD carried exon 28 mutations consistent with type 2B VWD, 17 carried GP1BA mutations consistent with a PT-VWD diagnosis, three had other VWD types (2A and 2M) and five expressed three non-previously published exon 28 mutations. Excluding 10 unaffected family members and one acquired VWD, 26 cases did not have mutations in either genes. Based on our study, the percentage of type 2B VWD diagnosis is 44% while the percentage of misdiagnosis of PT-VWD is 15%. This is the first large international study to investigate the occurrence of PT-VWD and type 2B VWD worldwide and to evaluate DNA analysis as a diagnostic tool for a large cohort of patients. The study highlights the diagnostic limitations due to unavailability/poor application of RIPA and related tests in some centres and proposes genetic analysis as a suitable tool for the discrimination of the two disorders worldwide. Cases that are negative for both VWF and GP1BA gene mutations require further evaluation for alternative diagnoses.
Resumo:
The timing and the organization of sleep architecture are mainly controlled by the circadian system, while sleep need and intensity are regulated by a homeostatic process. How independent these two systems are in regulating sleep is not well understood. In contrast to the impressive progress in the molecular genetics of circadian rhythms, little is known about the molecular basis of sleep. Nevertheless, as summarized here, phenotypic dissection of sleep into its most basic aspects can be used to identify both the single major genes and small effect quantitative trait loci involved. Although experimental models such as the mouse are more readily amenable to genetic analysis of sleep, similar approaches can be applied to humans.
Resumo:
Many organisms use fatty acid derivatives as biological regulators. In plants, for example, fatty acid-derived signals have established roles in the regulation of developmental and defense gene expression. Growing numbers of these compounds, mostly derived from fatty acid hydroperoxides, are being characterized. The model plant Arabidopsis thaliana is serving a vital role in the discovery of fatty acid-derived signal molecules and the genetic analysis of their synthesis and action. The Arabidopsis genome sequencing project, the availability of large numbers of mutants in fatty acid biosynthesis and signal transduction, as well as excellent pathosystems, make this plant a tremendously useful model for research in fatty acid signaling. This review summarizes recent progress in understanding fatty acid signaling in A. thaliana and highlights areas of research where progress is rapid. Particular attention is paid to the growing literature on the jasmonate family of regulators and their role in defense against insects and microbial pathogens.
Resumo:
In some ants, bees, and wasps, workers kill or "police" male eggs laid by other workers in order to maintain the reproductive primacy of the queen. Kin selection theory predicts that multiple mating by the queen is one factor that can selectively favor worker policing. This is because when the queen is mated to multiple males, workers are more closely related to the queen's sons than to the sons of other workers. Earlier work has suggested that reproductive patterns in the German wasp Vespula germanica may contradict this theory, because in some colonies a large fraction of the adult males were inferred to be the workers' sons, despite the effective queen mating frequency being greater than 2 (2.4). In the present study, we reexamine the V. germanica case and show that it does support the theory. First, genetic analysis confirms that the effective queen mating frequency is high, 2.9, resulting in workers being more related to the queen's sons than to other workers' sons. Second, behavioral assays show that worker-laid eggs are effectively killed by other workers, despite worker-laid eggs having the same intrinsic viability as queen-laid ones. Finally, we estimate that approximately 58.4% of the male eggs but only 0.44% of the adult males are worker derived in queenright colonies, consistent with worker reproduction being effectively policed.
Resumo:
SUMMARY : Two-component systems are key mediators implicated in the response of numerous bacteria to a wide range of signals and stimuli. The two-component system comprised of the sensor kinase GacS and the response regulator GacA is broadly distributed among γ-proteobacteria bacteria and fulfils diverse functions such as regulation of carbon storage and expression of virulence. In Pseudomonas fluorescens, a soil bacterium which protects plants from root-pathogenic fungi and nematodes, the GacS/GacA two-component system has been shown to be essential for the production of secondary metabolites and exoenzymes required for the biocontrol activity of the bacterium. The regulatory cascade initiated by GacS/GacA consists of two translational repressor proteins, RsmA and RsmE, as well as three GacAcontrolled small regulatory RNAs RsmX, RsmY and RsmZ, which titrate RsmA and RsmE to allow the expression of biocontrol factors. Genetic analysis revealed that two additional sensor kinases termed RetS and Lads were involved as negative and positive control elements, respectively, in the Gac/Rsm pathway in P. fluoresens CHAO. Furthermore, it could be proposed that RetS and Lads interact with GacS, thereby modulating the expression of antibiotic compounds and hydrogen cyanide, as well as the rpoS gene encoding the stress and stationary phase sigma factor σ. Temperature was found to be an important environmental cue that influences the Gac/Rsm network. Indeed, the production of antibiotic compounds and hydrogen cyanide was reduced at 35°C, by comparison with the production at 30°C. RetS was identified to be involved in this temperature control. The small RNA RsmY was confirmed to be positively regulated by GacA and RsmA/RsmE. Two essential regions were identified in the rsmY promoter by mutational analysis, the upstream activating sequence (UAS) and the linker sequence. Although direct experimental evidence is still missing, several observations suggest that GacA may bind to the UAS, whereas the linker region would be recognized by intermediate RsmA/RsmEdependent repressors and/or activators. In conclusion, this work has revealed new elements contributing to the function of the signal transduction mechanisms in the Gac/Rsm pathway. RESUME : Les systèmes ä deux composants sont des mécanismes d'une importance notoire que beaucoup de bactéries utilisent pour faire face et répondre aux stimuli environnementaux. Le système à deux composants comprenant le senseur GacS et le régulateur de réponse GacA est très répandu chez les γ-protéobactéries et remplit des fonctions aussi diverses que la régulation du stockage de carbone ou l'expression de la virulence. Chez Pseudomonas fluorescens CHAO, une bactérie du sol qui protège les racines des plantes contre des attaques de champignons et nématodes pathogènes, le système à deux composants GacS/GacA est essentiel à la production de métabolites secondaires et d'exoenzymes requis pour l'activité de biocontrôle de la bactérie. La cascade régulatrice initiée pas GacS/GacA fait intervenir deux protéines répresseur de traduction, RsmA et RsmE, ainsi que trois petits ARNs RsmX, RsmY et RsmZ, dont la production est contrôlée par GacA. Ces petits ARNs ont pour rôle de contrecarrer l'action des protéines répressseur de la traduction, ce qui permet l'expression de facteurs de biocontrôle. Des analyses génétiques ont révélé la présence de deux senseurs supplémentaires, appelés Rets et Lads, qui interviennent dans la cascade Gac/Rsm de P. fluorescens. L'impact de ces senseurs est, respectivement, négatif et positif. Ces interactions ont apparenunent lieu au niveau de GacS et permettent une modulation de l'expression des antibiotiques et de l'acide cyanhydrique, ainsi que du gène rpoS codant pour le facteur sigma du stress. La température s'est révélée être un facteur environnemental important qui influence la cascade Gac/Rsm. Il s'avère en effet que la production d'antibiotiques ainsi que d'acide cyanhydrique est moins importante à 35°C qu'à 30°C. L'implication du senseur Rets dans ce contrôle par la température a pu être démontrée. La régulation positive du petit ARN RsmY par GacA et RsmA/RsmE a pu être confirmée; par le biais d'une analyse mutationelle, deux régions essentielles ont pu être mises en évidence dans la région promotrice de rsmY. Malgré le manque de preuves expérimentales directes, certains indices suggèrent que GacA puisse directement se fixer sur une des deux régions (appelée UAS), tandis que la deuxième région (appelée linker) serait plutôt reconnue par des facteurs intermédiaires (activateurs ou répresseurs) dépendant de RsmA/RsmE. En conclusion, ce travail a dévoilé de nouveaux éléments permettant d'éclairer les mécanismes de transduction des signaux dans la cascade Gac/Rsm.
Resumo:
BACKGROUND: The recent availability of genetic analyses has demonstrated the shortcomings of the current phenotypic method of corneal dystrophy classification. Abnormalities in different genes can cause a single phenotype, whereas different defects in a single gene can cause different phenotypes. Some disorders termed corneal dystrophies do not appear to have a genetic basis. PURPOSE: The purpose of this study was to develop a new classification system for corneal dystrophies, integrating up-to-date information on phenotypic description, pathologic examination, and genetic analysis. METHODS: The International Committee for Classification of Corneal Dystrophies (IC3D) was created to devise a current and accurate nomenclature. RESULTS: This anatomic classification continues to organize dystrophies according to the level chiefly affected. Each dystrophy has a template summarizing genetic, clinical, and pathologic information. A category number from 1 through 4 is assigned, reflecting the level of evidence supporting the existence of a given dystrophy. The most defined dystrophies belong to category 1 (a well-defined corneal dystrophy in which a gene has been mapped and identified and specific mutations are known) and the least defined belong to category 4 (a suspected dystrophy where the clinical and genetic evidence is not yet convincing). The nomenclature may be updated over time as new information regarding the dystrophies becomes available. CONCLUSIONS: The IC3D Classification of Corneal Dystrophies is a new classification system that incorporates many aspects of the traditional definitions of corneal dystrophies with new genetic, clinical, and pathologic information. Standardized templates provide key information that includes a level of evidence for there being a corneal dystrophy. The system is user-friendly and upgradeable and can be retrieved on the website www.corneasociety.org/ic3d.
Resumo:
OBJECTIVE: To describe the clinical and molecular genetic findings in 2 carriers of Duchenne muscular dystrophy (DMD) who exhibited marked hemiatrophy. Duchenne muscular dystrophy is an X-linked disorder in which affected male patients harbor mutations in the dystrophin gene. Female patients with heterozygous mutations may be manifesting carriers. DESIGN: Case study. SETTING: Neurology clinic. PATIENTS: Two manifesting carriers of DMD. INTERVENTIONS: Clinical and radiologic examinations along with histologic and molecular investigations. RESULTS: Both patients had marked right-sided hemiatrophy on examination with radiologic evidence of muscle atrophy and fatty replacement on the affected side. In each case, histologic analysis revealed a reduction in dystrophin staining on the right side. Genetic analysis of the dystrophin gene revealed a tandem exonic duplication in patient 1 and a multiexonic deletion in patient 2 with no further point mutations identified on the other chromosome. CONCLUSIONS: Marked hemiatrophy can occur in DMD manifesting carriers. This is likely to result from a combination of skewed X-inactivation and somatic mosaicism.
Resumo:
Evaluation and management of renal cysts Renal cystic diseases are a heterogeneous group of conditions including heritable, developmental, and acquired disorders. They are united by the presence of microscopic or giant fluid-filled cavities and affect both children and adults. The definitive diagnosis of many of the renal cystic diseases requires clinical, radiological, pathological, and genetic analysis. A precise diagnosis is essential for prognosis, treatment, and future genetic counselling.
Resumo:
ABSTRACT: BACKGROUND: Numerous structurally unrelated drugs, including antipsychotics, can prolong QT interval and trigger the acquired long QT syndrome (aLQTS). All of them are thought to act at the level of KCNH2, a subunit of the potassium channel. Although the QT-prolonging drugs are proscribed in the subjects with aLQTS, the individual response to diverse QT-prolonging drugs may vary substantially. CASE PRESENTATION: We report here a case of aLQTS in response to small doses of risperidone that was confirmed at three independent drug challenges in the absence of other QT-prolonging drugs. On the other hand, the patient did not respond with QT prolongation to some other antipsychotics. In particular, the administration of clozapine, known to be associated with higher QT-prolongation risk than risperidone, had no effect on QT-length. A detailed genetic analysis revealed no mutations or polymorphisms in KCNH2, KCNE1, KCNE2, SCN5A and KCNQ1 genes. CONCLUSIONS: Our observation suggests that some patients may display a selective aLQTS to a single antipsychotic, without a potassium channel-related genetic substrate. Contrasting with the idea of a common target of the aLQTS-triggerring drugs, our data suggests existence of an alternative target protein, which unlike the KCNH2 would be drug-selective.
Resumo:
Genetic analysis of fission yeast suggests a role for the spHop2-Mnd1 proteins in the Rad51 and Dmc1-dependent meiotic recombination pathways. In order to gain biochemical insights into this process, we purified Schizosaccharomyces pombe Hop2-Mnd1 to homogeneity. spHop2 and spMnd1 interact by co-immunoprecipitation and two-hybrid analysis. Electron microscopy reveals that S. pombe Hop2-Mnd1 binds single-strand DNA ends of 3'-tailed DNA. Interestingly, spHop2-Mnd1 promotes the renaturation of complementary single-strand DNA and catalyses strand exchange reactions with short oligonucleotides. Importantly, we show that spHop2-Mnd1 stimulates spDmc1-dependent strand exchange and strand invasion. Ca(2+) alleviate the requirement for the order of addition of the proteins on DNA. We also demonstrate that while spHop2-Mnd1 affects spDmc1 specifically, mHop2 or mHop2-Mnd1 stimulates both the hRad51 and hDmc1 recombinases in strand exchange assays. Thus, our results suggest a crucial role for S. pombe and mouse Hop2-Mnd1 in homologous pairing and strand exchange and reveal evolutionary divergence in their specificity for the Dmc1 and Rad51 recombinases.
Resumo:
In some ants, bees, and wasps, workers kill or "police" male eggs laid by other workers in order to maintain the reproductive primacy of the queen. Kin selection theory predicts that multiple mating by the queen is one factor that can selectively favor worker policing. This is because when the queen is mated to multiple males, workers are more closely related to the queen's sons than to the sons of other workers. Earlier work has suggested that reproductive patterns in the German wasp Vespula germanica may contradict this theory, because in some colonies a large fraction of the adult males were inferred to be the workers' sons, despite the effective queen mating frequency being greater than 2 (2.4). In the present study, we reexamine the V. germanica case and show that it does support the theory. First, genetic analysis confirms that the effective queen mating frequency is high, 2.9, resulting in workers being more related to the queen's sons than to other workers' sons. Second, behavioral assays show that worker-laid eggs are effectively killed by other workers, despite worker-laid eggs having the same intrinsic viability as queen-laid ones. Finally, we estimate that approximately 58.4% of the male eggs but only 0.44% of the adult males are worker derived in queenright colonies, consistent with worker reproduction being effectively policed.
Resumo:
Background: Isolated complex III deficiencies are caused by mutations in the mitochondrial CytB gene, in the BCS1L gene coding for a CIII assembly factor and in the UQCRQ gene that codes for the ubiquinone binding protein of complex III. Objective: Description of clinical features, mitochondrial function and molecular genetic analysis in a patient with an isolated complex III deficiency. Patient: A 17 year old boy, born to consanguineous parents who presented with hypoglycemia, glycosuria, deafness, growth retardation, Fanconi Syndrome and severe lactic acidosis in the neonatal period. Methods: Activities and assembly of OXPHOS complexes were investigated spectrophotometrically and by BN-PAGE. mt-DNAwas screened for deletions. Cytochrome b (CytB) and the BCS1L gene were sequenced. Results: Isolated complex III deficiency was detected in the patient's skeletal muscle. Using BN-PAGE blotting a complex III of lower molecular weight was detected. Staining the 2D reveals a missing subunit. No mutation was detected in the mitochondrial CytB gene. Sequence analysis of BCS1L revealed a novel homozygous point mutation p.M48V. Conclusion: The patients decreased complex III activity is most likely caused by incomplete assembly of complex III due to the homozygous p. M48V mutation in the BCS1L gene.