173 resultados para GATED CATION CHANNEL
Resumo:
The fatty acid oxygenation up-regulated 2 (fou2) mutant in Arabidopsis thaliana creates a gain-of-function allele in a non-selective cation channel encoded by the Two Pore Channel 1 (TPC1) gene. This mutant genetically implicates cation fluxes in the control of the positive feedback loop whereby jasmonic acid (JA) stimulates its own synthesis. In this study we observed extensive transcriptome reprogramming in healthy fou2 leaves closely resembling that induced by treatment with methyl jasmonate, biotic stresses and the potassium starvation response. Proteomic analysis of fou2 leaves identified increased levels of seven biotic stress- and JA-inducible proteins. In agreement with these analyses, epistasis studies performed by crossing fou2 with aos indicated that elevated levels of JA in fou2 are the major determinant of the mutant phenotype. In addition, generation of fou2 aba1-5, fou2 etr1-1 and fou2 npr1-1 double mutants showed that the fou2 phenotype was only weakly affected by ABA levels and unaffected by mutations in NPR1 and ETR1. The results now suggest possible mechanisms whereby fou2 could induce JA synthesis/signaling early in the wound response. In contrast to fou2, transcriptome analysis of a loss-of-function allele of TPC1, tpc1-2, revealed no differential expression of JA biosynthesis genes in resting leaves. However, the analysis disclosed reduced mRNA levels of the pathogenesis-related genes PDF1.2a and THI2.1 in healthy and diseased tpc1-2 leaves. The results suggest that wild-type TPC1 contributes to their expression by mechanisms somewhat different from those affecting their expression in fou2.
A key role of TRPC channels in the regulation of electromechanical activity of the developing heart.
Resumo:
Aims It is well established that dysfunction of voltage-dependent ion channels results in arrhythmias and conduction disturbances in the foetal and adult heart. However, the involvement of voltage-insensitive cationic TRPC (transient receptor potential canonical) channels remains unclear. We assessed the hypothesis that TRPC channels play a crucial role in the spontaneous activity of the developing heart.Methods and results TRPC isoforms were investigated in isolated hearts obtained from 4-day-old chick embryos. Using RT-PCR, western blotting and co-immunoprecipitation, we report for the first time that TRPC1, 3, 4, 5, 6, and 7 isoforms are expressed at the mRNA and protein levels and that they can form a macromolecular complex with the alpha 1C subunit of the L-type voltage-gated calcium channel (Cav1.2) in atria and ventricle. Using ex vivo electrocardiograms, electrograms of isolated atria and ventricle and ventricular mechanograms, we found that inhibition of TRPC channels by SKF-96365 leads to negative chrono-, dromo-, and inotropic effects, prolongs the QT interval, and provokes first-and second-degree atrioventricular blocks. Pyr3, a specific antagonist of TRPC3, affected essentially atrioventricular conduction. On the other hand, specific blockade of the L-type calcium channel with nifedipine rapidly stopped ventricular contractile activity without affecting rhythmic electrical activity.Conclusions These results give new insights into the key role that TRPC channels, via interaction with the Cav1.2 channel, play in regulation of cardiac pacemaking, conduction, ventricular activity, and contractility during cardiogenesis.
Resumo:
Mutations in the CACNA1A gene, encoding the α1 subunit of the voltage-gated calcium channel Ca(V)2.1 (P/Q-type), have been associated with three neurological phenotypes: familial and sporadic hemiplegic migraine type 1 (FHM1, SHM1), episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 (SCA6). We report a child with congenital ataxia, abnormal eye movements and developmental delay who presented severe attacks of hemiplegic migraine triggered by minor head traumas and associated with hemispheric swelling and seizures. Progressive cerebellar atrophy was also observed. Remission of the attacks was obtained with acetazolamide. A de novo 3 bp deletion was found in heterozygosity causing loss of a phenylalanine residue at position 1502, in one of the critical transmembrane domains of the protein contributing to the inner part of the pore. We characterized the electrophysiology of this mutant in a Xenopus oocyte in vitro system and showed that it causes gain of function of the channel. The mutant Ca(V)2.1 activates at lower voltage threshold than the wild type. These findings provide further evidence of this molecular mechanism as causative of FHM1 and expand the phenotypic spectrum of CACNA1A mutations with a child exhibiting severe SHM1 and non-episodic ataxia of congenital onset.
Resumo:
The slow vacuolar (SV) channel has been characterized in different dicots by patch-clamp recordings. This channel represents the major cation conductance of the largest organelle in most plant cells. Studies with the tpc1-2 mutant of the model dicot plant Arabidopsis thaliana identified the SV channel as the product of the TPC1 gene. By contrast, research on rice and wheat TPC1 suggested that the monocot gene encodes a plasma membrane calcium-permeable channel. To explore the site of action of grass TPC1 channels, we expressed OsTPC1 from rice (Oryza sativa) and TaTPC1 from wheat (Triticum aestivum) in the background of the Arabidopsis tpc1-2 mutant. Cross-species tpc1 complementation and patch-clamping of vacuoles using Arabidopsis and rice tpc1 null mutants documented that both monocot TPC1 genes were capable of rescuing the SV channel deficit. Vacuoles from wild-type rice but not the tpc1 loss-of-function mutant harbor SV channels exhibiting the hallmark properties of dicot TPC1/SV channels. When expressed in human embryonic kidney (HEK293) cells OsTPC1 was targeted to Lysotracker-Red-positive organelles. The finding that the rice TPC1, just like those from the model plant Arabidopsis and even animal cells, is localized and active in lyso-vacuolar membranes associates this cation channel species with endomembrane function.
Resumo:
Impairment of lung liquid absorption can lead to severe respiratory symptoms, such as those observed in pulmonary oedema. In the adult lung, liquid absorption is driven by cation transport through two pathways: a well-established amiloride-sensitive Na(+) channel (ENaC) and, more controversially, an amiloride-insensitive channel that may belong to the cyclic nucleotide-gated (CNG) channel family. Here, we show robust CNGA1 (but not CNGA2 or CNGA3) channel expression principally in rat alveolar type I cells; CNGA3 was expressed in ciliated airway epithelial cells. Using a rat in situ lung liquid clearance assay, CNG channel activation with 1 mM 8Br-cGMP resulted in an approximate 1.8-fold stimulation of lung liquid absorption. There was no stimulation by 8Br-cGMP when applied in the presence of either 100 μM L: -cis-diltiazem or 100 nM pseudechetoxin (PsTx), a specific inhibitor of CNGA1 channels. Channel specificity of PsTx and amiloride was confirmed by patch clamp experiments showing that CNGA1 channels in HEK 293 cells were not inhibited by 100 μM amiloride and that recombinant αβγ-ENaC were not inhibited by 100 nM PsTx. Importantly, 8Br-cGMP stimulated lung liquid absorption in situ, even in the presence of 50 μM amiloride. Furthermore, neither L: -cis-diltiazem nor PsTx affected the β(2)-adrenoceptor agonist-stimulated lung liquid absorption, but, as expected, amiloride completely ablated it. Thus, transport through alveolar CNGA1 channels, located in type I cells, underlies the amiloride-insensitive component of lung liquid reabsorption. Furthermore, our in situ data highlight the potential of CNGA1 as a novel therapeutic target for the treatment of diseases characterised by lung liquid overload.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal H(+)-gated cation channels, and the transient receptor potential vanilloid 1 channel (TRPV1) is a multimodal cation channel activated by low pH, noxious heat, capsaicin, and voltage. ASICs and TRPV1 are present in sensory neurons. It has been shown that raising the temperature increases TRPV1 and decreases ASIC H(+)-gated current amplitudes. To understand the underlying mechanisms, we have analyzed ASIC and TRPV1 function in a recombinant expression system and in dorsal root ganglion (DRG) neurons at room and physiological temperature. We show that temperature in the range studied does not affect the pH dependence of ASIC and TRPV1 activation. A temperature increase induces, however, a small alkaline shift of the pH dependence of steady-state inactivation of ASIC1a, ASIC1b, and ASIC2a. The decrease in ASIC peak current amplitudes at higher temperatures is likely in part due to the observed accelerated open channel inactivation kinetics and for some ASIC types to the changed pH dependence of steady-state inactivation. The increase in H(+)-activated TRPV1 current at the higher temperature is at least in part due to a hyperpolarizing shift in its voltage dependence. The contribution of TRPV1 relative to ASICs to H(+)-gated currents in DRG neurons increases with higher temperature and acidity. Still, ASICs remain the principal pH sensors of DRG neurons at 35°C in the pH range ≥6.
Resumo:
Mutations in the CACNA1A gene, encoding the α1 subunit of the voltage-gated calcium channel CaV2.1 (P/Q-type), have been associated with three neurological phenotypes: familial and sporadic hemiplegic migraine type 1 (FHM1, SHM1), episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 (SCA6). We report a child with congenital ataxia, abnormal eye movements and developmental delay who presented severe attacks of hemiplegic migraine triggered by minor head traumas and associated with hemispheric swelling and seizures. Progressive cerebellar atrophy was also observed. Remission of the attacks was obtained with acetazolamide. A de novo 3bp deletion was found in heterozygosity causing loss of a phenylalanine residue at position 1502, in one of the critical transmembrane domains of the protein contributing to the inner part of the pore. We characterized the electrophysiology of this mutant in a Xenopus oocyte in vitro system and showed that it causes gain of function of the channel. The mutant CaV2.1 activates at lower voltage threshold than the wild type. These findings provide further evidence of this molecular mechanism as causative of FHM1 and expand the phenotypic spectrum of CACNA1A mutations with a child exhibiting severe SHM1 and non-episodic ataxia of congenital onset.
Resumo:
BACKGROUND AND PURPOSE: APETx2, a toxin from the sea anemone Anthropleura elegantissima, inhibits acid-sensing ion channel 3 (ASIC3)-containing homo- and heterotrimeric channels with IC(50) values < 100 nM and 0.1-2 µM respectively. ASIC3 channels mediate acute acid-induced and inflammatory pain response and APETx2 has been used as a selective pharmacological tool in animal studies. Toxins from sea anemones also modulate voltage-gated Na(+) channel (Na(v) ) function. Here we tested the effects of APETx2 on Na(v) function in sensory neurones.¦EXPERIMENTAL APPROACH: Effects of APETx2 on Na(v) function were studied in rat dorsal root ganglion (DRG) neurones by whole-cell patch clamp.¦KEY RESULTS: APETx2 inhibited the tetrodotoxin (TTX)-resistant Na(v) 1.8 currents of DRG neurones (IC(50) , 2.6 µM). TTX-sensitive currents were less inhibited. The inhibition of Na(v) 1.8 currents was due to a rightward shift in the voltage dependence of activation and a reduction of the maximal macroscopic conductance. The inhibition of Na(v) 1.8 currents by APETx2 was confirmed with cloned channels expressed in Xenopus oocytes. In current-clamp experiments in DRG neurones, the number of action potentials induced by injection of a current ramp was reduced by APETx2.¦CONCLUSIONS AND IMPLICATIONS: APETx2 inhibited Na(v) 1.8 channels, in addition to ASIC3 channels, at concentrations used in in vivo studies. The limited specificity of this toxin should be taken into account when using APETx2 as a pharmacological tool. Its dual action will be an advantage for the use of APETx2 or its derivatives as analgesic drugs.
Resumo:
Abstract :The contraction of the heart or skeletal muscles is mainly due to the propagation, through excitable cells, of an electrical influx called action potential (AP). The AP results from the sequential opening of ion channels that generate inward or outward currents through the cell membrane. Among all the channels involved, the voltage-gated sodium channel is responsible for the rising phase of the action potential. Ten genes encode the different isoforms of these channels (from Nav1.1 to Nav1.9 and an atypical channel named NavX). Nav1.4 and Nav1.5 are the main skeletal muscle and cardiac sodium channels respectively. Their importance for muscle and heart function has been highlighted by the description of mutations in their encoding genes SCN4A and SCNSA. They lead respectively to neuromuscular disorders such as myotonia or paralysis (for Nav1.4), and to cardiac arrhythmias that can deteriorate into sudden cardiac death (for Nav1.5).The general aim of my PhD work has been to study diseases linked with channels dysfunction, also called channelopathies. In that purpose, I investigated the function and the regulation of the muscle and cardiac voltage-gated sodium channels. During the two first studies, I characterized the effects of two mutations affecting Nav1.4 and Nav1.5 function. I used the HEK293 model cells to express wild-type or mutant channels and then studied their biophysical properties with the patch-clamp technique, in whole cell configuration. We found that the SCN4A mutation produced complex alterations of the muscle sodium channel function, that could explain the myotonic phenotype described in patients carrying the mutation. In the second study, the index case was an heterozygous carrier of a SCNSA mutation that leads to a "loss of function" of the channel. The decreased sodium current measured with mutated Nay 1.5 channels, at physiological temperature, was a one of the factors that could explain the observed Brugada syndrome. The last project aimed at identifying a new potential protein interacting with the cardiac sodium channel. We found that the protein SAP97 binds the three last amino-acids of the C-terminus of Na,, 1.5. Our results also indicated that silencing the expression of SAP97 in HEK293 cells decreased the sodium current. Sodium channels lacking their three last residues also produced a reduced INa. These preliminary results suggest that SAP97 is implicated in the regulation of sodium channel. Whether this effect is direct or imply the action of an adaptor protein remains to be investigated. Moreover, our group has previously shown that Nav1.5 channels are localized to lateral membranes of cardiomyocytes by the dystrophin multiprotein complex (DMC). This suggests that sodium channels are distributed in, at least, two different pools: one targeted at lateral membranes by DMC and the other at intercalated discs by another protein such as SAP97.These studies reveal that cardiac and muscle diseases may result from ion channel mutations but also from regulatory proteins affecting their regulation.Résumé :La contraction des muscles et du coeur est principalement due à la propagation, à travers les cellules excitables, d'un stimulus électrique appelé potentiel d'action (PA). C'est l'ouverture séquentielle de plusieurs canaux ioniques transmembranaires, permettant l'entrée ou la sortie d'ions dans la cellule, qui est à l'origine de ce PA. Parmi tous les canaux ioniques impliqués dans ce processus, les canaux sodiques dépendant du voltage sont responsables de la première phase du potentiel d'action. Les différentes isoformes de ces canaux (de Nav1.1 à Nav1.9 et NavX) sont codées par dix gènes distincts. Nav1.4 et Nav1.5 sont les principaux variants exprimés respectivement dans le muscle et le coeur. Plusieurs mutations ont été décrites dans les gènes qui codent pour ces deux canaux: SCN4A (pour Nav1.4) et SCNSA (pour Nav1.5). Elles sont impliquées dans des pathologies neuromusculaires telles que des paralysies ou myotonies (SCN4A) ou des arythmies cardiaques pouvant conduire à la mort subite cardiaque (SCNSA).Mon travail de thèse a consisté à étudier les maladies liées aux dysfonctionnements de ces canaux, aussi appelées canalopathies. J'ai ainsi analysé la fonction et la régulation des canaux sodiques dépendant du voltage dans le muscle squelettique et le coeur. A travers les deux premières études, j'ai ainsi pu examiner les conséquences de deux mutations affectant respectivement les canaux Nav1.4 et Nav1.5. Les canaux sauvages ou mutants ont été exprimés dans des cellules HEK293 afin de caractériser leurs propriétés biophysiques par la technique du patch clamp en configuration cellule entière. Nous avons pu déterminer que la mutation trouvée dans le gène SCN4A engendrait des modifications importantes de la fonction du canal musculaire. Ces altérations fournissent des indications nous permettant d'expliquer certains aspects de la myotonie observée chez les membres de la famille étudiée. Le patient présenté dans la deuxième étude était hétérozygote pour la mutation identifiée dans le gène SCNSA. La perte de fonction des canaux Nav1.5 ainsi engendrée, a été observée lors d'analyses à températures physiologiques. Elle représente l'un des éléments pouvant potentiellement expliquer le syndrome de Brugada du patient. La dernière étude a consisté à identifier une nouvelle protéine impliquée dans la régulation du canal sodique cardiaque. Nos expériences ont démontré que les trois derniers acides aminés de la partie C-terminale de Nav1.5 pouvaient interagir avec la protéine SAP97. Lorsque que l'expression de la SAP97 est réduite dans les cellules HEK293, cela induit une baisse importante du courant sodique. De même, les canaux tronqués de leurs trois derniers acides aminés génèrent un flux ionique réduit. Ces résultats préliminaires suggèrent que SAP97 est peut-être impliquée dans la régulation du canal Na,,1.5. Des expériences complémentaires permettront de déterminer si ces deux protéines interagissent directement ou si une protéine adaptatrice est nécessaire. De plus, nous avons préalablement montré que les canaux Nav1.5 étaient localisés au niveau de la membrane latérale des cardiomyocytes par le complexe multiprotéique de la dystrophine (DMC). Ceci suggère que les canaux sodiques peuvent être distribués dans un minimum de deux pools, l'un ciblé aux membranes latérales pax le DMC et l'autre dirigé vers les disques intercalaires par des protéines telles que SAP97.L'ensemble de ces études met en évidence que certaines maladies musculaires et cardiaques peuvent être la conséquence directe de mutations de canaux ioniques, mais que l'action de protéines auxiliaires peut aussi affecter leur fonction.
Resumo:
Impairment of lung liquid absorption can lead to severe respiratory symptoms, such as those observed in pulmonary oedema. In the adult lung, liquid absorption is driven by cation transport through two pathways: a well-established amiloride-sensitive Na(+) channel (ENaC) and, more controversially, an amiloride-insensitive channel that may belong to the cyclic nucleotide-gated (CNG) channel family. Here, we show robust CNGA1 (but not CNGA2 or CNGA3) channel expression principally in rat alveolar type I cells; CNGA3 was expressed in ciliated airway epithelial cells. Using a rat in situ lung liquid clearance assay, CNG channel activation with 1 mM 8Br-cGMP resulted in an approximate 1.8-fold stimulation of lung liquid absorption. There was no stimulation by 8Br-cGMP when applied in the presence of either 100 μM L: -cis-diltiazem or 100 nM pseudechetoxin (PsTx), a specific inhibitor of CNGA1 channels. Channel specificity of PsTx and amiloride was confirmed by patch clamp experiments showing that CNGA1 channels in HEK 293 cells were not inhibited by 100 μM amiloride and that recombinant αβγ-ENaC were not inhibited by 100 nM PsTx. Importantly, 8Br-cGMP stimulated lung liquid absorption in situ, even in the presence of 50 μM amiloride. Furthermore, neither L: -cis-diltiazem nor PsTx affected the β(2)-adrenoceptor agonist-stimulated lung liquid absorption, but, as expected, amiloride completely ablated it. Thus, transport through alveolar CNGA1 channels, located in type I cells, underlies the amiloride-insensitive component of lung liquid reabsorption. Furthermore, our in situ data highlight the potential of CNGA1 as a novel therapeutic target for the treatment of diseases characterised by lung liquid overload.
Resumo:
The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed in pacemaker cells very early during cardiogenesis. This work aimed at determining to what extent these channels are implicated in the electromechanical disturbances induced by a transient oxygen lack which may occur in utero. Spontaneously beating hearts or isolated ventricles and outflow tracts dissected from 4-day-old chick embryos were exposed to a selective inhibitor of HCN channels (ivabradine 0.1-10microM) to establish a dose-response relationship. The effects of ivabradine on electrocardiogram, excitation-contraction coupling and contractility of hearts submitted to anoxia (30min) and reoxygenation (60min) were also determined. The distribution of the predominant channel isoform, HCN4, was established in atria, ventricle and outflow tract by immunoblotting. Intrinsic beating rate of atria, ventricle and outflow tract was 164+/-22 (n=10), 78+/-24 (n=8) and 40+/-12bpm (n=23, mean+/-SD), respectively. In the whole heart, ivabradine (0.3microM) slowed the firing rate of atria by 16% and stabilized PR interval. These effects persisted throughout anoxia-reoxygenation, whereas the variations of QT duration, excitation-contraction coupling and contractility, as well as the types and duration of arrhythmias were not altered. Ivabradine (10microM) reduced the intrinsic rate of atria and isolated ventricle by 27% and 52%, respectively, whereas it abolished activity of the isolated outflow tract. Protein expression of HCN4 channels was higher in atria and ventricle than in the outflow tract. Thus, HCN channels are specifically distributed and control finely atrial, ventricular and outflow tract pacemakers as well as conduction in the embryonic heart under normoxia and throughout anoxia-reoxygenation.
Resumo:
BACKGROUND: Sodium channel NaV1.5 underlies cardiac excitability and conduction. The last 3 residues of NaV1.5 (Ser-Ile-Val) constitute a PDZ domain-binding motif that interacts with PDZ proteins such as syntrophins and SAP97 at different locations within the cardiomyocyte, thus defining distinct pools of NaV1.5 multiprotein complexes. Here, we explored the in vivo and clinical impact of this motif through characterization of mutant mice and genetic screening of patients. METHODS AND RESULTS: To investigate in vivo the regulatory role of this motif, we generated knock-in mice lacking the SIV domain (ΔSIV). ΔSIV mice displayed reduced NaV1.5 expression and sodium current (INa), specifically at the lateral myocyte membrane, whereas NaV1.5 expression and INa at the intercalated disks were unaffected. Optical mapping of ΔSIV hearts revealed that ventricular conduction velocity was preferentially decreased in the transversal direction to myocardial fiber orientation, leading to increased anisotropy of ventricular conduction. Internalization of wild-type and ΔSIV channels was unchanged in HEK293 cells. However, the proteasome inhibitor MG132 rescued ΔSIV INa, suggesting that the SIV motif is important for regulation of NaV1.5 degradation. A missense mutation within the SIV motif (p.V2016M) was identified in a patient with Brugada syndrome. The mutation decreased NaV1.5 cell surface expression and INa when expressed in HEK293 cells. CONCLUSIONS: Our results demonstrate the in vivo significance of the PDZ domain-binding motif in the correct expression of NaV1.5 at the lateral cardiomyocyte membrane and underline the functional role of lateral NaV1.5 in ventricular conduction. Furthermore, we reveal a clinical relevance of the SIV motif in cardiac disease.
Resumo:
The Na,K-ATPase is a major ion-motive ATPase of the P-type family responsible for many aspects of cellular homeostasis. To determine the structure of the pathway for cations across the transmembrane portion of the Na,K-ATPase, we mutated 24 residues of the fourth transmembrane segment into cysteine and studied their function and accessibility by exposure to the sulfhydryl reagent 2-aminoethyl-methanethiosulfonate. Accessibility was also examined after treatment with palytoxin, which transforms the Na,K-pump into a cation channel. Of the 24 tested cysteine mutants, seven had no or a much reduced transport function. In particular cysteine mutants of the highly conserved "PEG" motif had a strongly reduced activity. However, most of the non-functional mutants could still be transformed by palytoxin as well as all of the functional mutants. Accessibility, determined as a 2-aminoethyl-methanethiosulfonate-induced reduction of the transport activity or as inhibition of the membrane conductance after palytoxin treatment, was observed for the following positions: Phe(323), Ile(322), Gly(326), Ala(330), Pro(333), Glu(334), and Gly(335). In accordance with a structural model of the Na,K-ATPase obtained by homology modeling with the two published structures of sarcoplasmic and endoplasmic reticulum calcium ATPase (Protein Data Bank codes 1EUL and 1IWO), the results suggest the presence of a cation pathway along the side of the fourth transmembrane segment that faces the space between transmembrane segments 5 and 6. The phenylalanine residue in position 323 has a critical position at the outer mouth of the cation pathway. The residues thought to form the cation binding site II ((333)PEGL) are also part of the accessible wall of the cation pathway opened by palytoxin through the Na,K-pump.
Resumo:
Sequential stages in the life cycle of the ionotropic 5-HT(3) receptor (5-HT(3)R) were resolved temporally and spatially in live cells by multicolor fluorescence confocal microscopy. The insertion of the enhanced cyan fluorescent protein into the large intracellular loop delivered a fluorescent 5-HT(3)R fully functional in terms of ligand binding specificity and channel activity, which allowed for the first time a complete real-time visualization and documentation of intracellular biogenesis, membrane targeting, and ligand-mediated internalization of a receptor belonging to the ligand-gated ion channel superfamily. Fluorescence signals of newly expressed receptors were detectable in the endoplasmic reticulum about 3 h after transfection onset. At this stage receptor subunits assembled to form active ligand binding sites as demonstrated in situ by binding of a fluorescent 5-HT(3)R-specific antagonist. After novel protein synthesis was chemically blocked, the 5-HT(3) R populations in the endoplasmic reticulum and Golgi cisternae moved virtually quantitatively to the cell surface, indicating efficient receptor folding and assembly. Intracellular 5-HT(3) receptors were trafficking in vesicle-like structures along microtubules to the cell surface at a velocity generally below 1 mum/s and were inserted into the plasma membrane in a characteristic cluster distribution overlapping with actin-rich domains. Internalization of cell surface 5-HT(3) receptors was observed within minutes after exposure to an extracellular agonist. Our orchestrated use of spectrally distinguishable fluorescent labels for the receptor, its cognate ligand, and specific organelle markers can be regarded as a general approach allowing subcellular insights into dynamic processes of membrane receptor trafficking.
Resumo:
Methadone is administered as a chiral mixture of (R,S)-methadone. The opioid effect is mainly mediated by (R)-methadone, whereas (S)-methadone blocks the human ether-à-go-go-related gene (hERG) voltage-gated potassium channel more potently, which can cause drug-induced long QT syndrome, leading to potentially lethal ventricular tachyarrhythmias. To investigate whether substitution of (R,S)-methadone by (R)-methadone could reduce the corrected QT (QTc) interval, (R,S)-methadone was replaced by (R)-methadone (half-dose) in 39 opioid-dependent patients receiving maintenance treatment for 14 days. (R)-methadone was then replaced by the initial dose of (R,S)-methadone for 14 days (n = 29). Trough (R)-methadone and (S)-methadone plasma levels and electrocardiogram measurements were taken. The Fridericia-corrected QT (QTcF) interval decreased when (R,S)-methadone was replaced by a half-dose of (R)-methadone; the median (interquartile range [IQR]) values were 423 (398-440) milliseconds (ms) and 412 (395-431) ms (P = .06) at days 0 and 14, respectively. Using a univariate mixed-effect linear model, the QTcF value decreased by a mean of -3.9 ms (95% confidence interval [CI], -7.7 to -0.2) per week (P = .04). The QTcF value increased when (R)-methadone was replaced by the initial dose of (R,S)-methadone for 14 days; median (IQR) values were 424 (398-436) ms and 424 (412-443) ms (P = .01) at days 14 and 28, respectively. The univariate model showed that the QTcF value increased by a mean of 4.7 ms (95% CI, 1.3-8.1) per week (P = .006). Substitution of (R,S)-methadone by (R)-methadone reduces the QTc interval value. A safer cardiac profile of (R)-methadone is in agreement with previous in vitro and pharmacogenetic studies. If the present results are confirmed by larger studies, (R)-methadone should be prescribed instead of (R,S)-methadone to reduce the risk of cardiac toxic effects and sudden death.