33 resultados para Functional literacy - Ontario - Case studies.
Resumo:
Der Sammelband ,,Right-wing extremism" hat ein doppeltes Ziel. Zum einen soll er das Nationale Forschungsprogramm 40plus und seine Projekte präsentieren (die alle mit Beiträgen präsent sind), zum anderen sollen diese nationalen Beiträge in eine internationale Perspektive gestellt werden, sodass in der Übersicht und Umschau eine Verortung der schweizerischen Forschung (und damit auch des NFP40plus selbst) und ihrer Resultate möglich wird. Eingeladen wurden dazu führende europäische Forscher auf dem Gebiet des Rechtsextremismus.
Resumo:
Role reversal, whereby a child attempts to meet her parent's adult needs for parenting, intimacy, or companionship, has been identified as a risk factor for developmental disturbances. It has been defined from diverse perspectives as a child attachment strategy, a parent - toddler relational disturbance, and a boundary disturbance between parents and child. The recently discovered infant's triangular capacity, namely the sharing of her attention and affects with both parents, allows one to analyse the infant's contribution to early family dynamics. Role reversal was detected in 4 out of 45 father - mother - infant interactions observed in trilogue play from pregnancy to toddlerhood. The developmental trajectories towards role reversal are explored by means of case analyses. Results are compared with cases of problematic triangulation encountered in the same sample. In role reversal, family interactions are rigidly organized around a "two against one" coalition, whereby the normative hierarchy between parents and child is reversed. The child's triangular capacity is overactivated, controlling the tension between her parents by provocation - animation strategies
Resumo:
A procedure was developed for determining Pu-241 activity in environmental samples. This beta emitter isotope of plutonium was measured by ultra low level liquid scintillation, after several separation and purification steps that involved the use of a highly selective extraction chromatographic resin (Eichrom-TEVA). Due to the lack of reference material for Pu-241, the method was nevertheless validated using four IAEA reference sediments with information values for Pu-241. Next, the method was used to determine the Pu-241 activity in alpine soils of Switzerland and France. The Pu-241/Pu-239,Pu-240 and Pu-238/Pu-239,Pu-240 activity ratios confirmed that Pu contamination in the tested alpine soils originated mainly from global fallout from nuclear weapon tests conducted in the fifties and sixties. Estimation of the date of the contamination, using the Pu-241/Am-241 age-dating method, further confirmed this origin. However, the Pu-241/Am-241 dating method was limited to samples where Pu-Am fractionation was insignificant. If any, the contribution of the Chernobyl accident is negligible.
Resumo:
Sustainable resource use is one of the most important environmental issues of our times. It is closely related to discussions on the 'peaking' of various natural resources serving as energy sources, agricultural nutrients, or metals indispensable in high-technology applications. Although the peaking theory remains controversial, it is commonly recognized that a more sustainable use of resources would alleviate negative environmental impacts related to resource use. In this thesis, sustainable resource use is analysed from a practical standpoint, through several different case studies. Four of these case studies relate to resource metabolism in the Canton of Geneva in Switzerland: the aim was to model the evolution of chosen resource stocks and flows in the coming decades. The studied resources were copper (a bulk metal), phosphorus (a vital agricultural nutrient), and wood (a renewable resource). In addition, the case of lithium (a critical metal) was analysed briefly in a qualitative manner and in an electric mobility perspective. In addition to the Geneva case studies, this thesis includes a case study on the sustainability of space life support systems. Space life support systems are systems whose aim is to provide the crew of a spacecraft with the necessary metabolic consumables over the course of a mission. Sustainability was again analysed from a resource use perspective. In this case study, the functioning of two different types of life support systems, ARES and BIORAT, were evaluated and compared; these systems represent, respectively, physico-chemical and biological life support systems. Space life support systems could in fact be used as a kind of 'laboratory of sustainability' given that they represent closed and relatively simple systems compared to complex and open terrestrial systems such as the Canton of Geneva. The chosen analysis method used in the Geneva case studies was dynamic material flow analysis: dynamic material flow models were constructed for the resources copper, phosphorus, and wood. Besides a baseline scenario, various alternative scenarios (notably involving increased recycling) were also examined. In the case of space life support systems, the methodology of material flow analysis was also employed, but as the data available on the dynamic behaviour of the systems was insufficient, only static simulations could be performed. The results of the case studies in the Canton of Geneva show the following: were resource use to follow population growth, resource consumption would be multiplied by nearly 1.2 by 2030 and by 1.5 by 2080. A complete transition to electric mobility would be expected to only slightly (+5%) increase the copper consumption per capita while the lithium demand in cars would increase 350 fold. For example, phosphorus imports could be decreased by recycling sewage sludge or human urine; however, the health and environmental impacts of these options have yet to be studied. Increasing the wood production in the Canton would not significantly decrease the dependence on wood imports as the Canton's production represents only 5% of total consumption. In the comparison of space life support systems ARES and BIORAT, BIORAT outperforms ARES in resource use but not in energy use. However, as the systems are dimensioned very differently, it remains questionable whether they can be compared outright. In conclusion, the use of dynamic material flow analysis can provide useful information for policy makers and strategic decision-making; however, uncertainty in reference data greatly influences the precision of the results. Space life support systems constitute an extreme case of resource-using systems; nevertheless, it is not clear how their example could be of immediate use to terrestrial systems.
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
Industrial symbiosis (IS) emerged as a self-organizing business strategy among firms that are willing to cooperate to improve their economic and environmental performance. The adoption of such cooperative strategies relates to increasing costs of waste management, most of which are driven by policy and legislative requirements. Development of IS depends on an enabling context of social, informational, technological, economical and political factors. The power to influence this context varies among the agents involved such as the government, businesses or coordinating entities. Governmental intervention, as manifested through policies, could influence a wider range of factors; and we believe this is an area which is under-researched. This paper aims to critically appraise the waste policy interventions from supra-national to sub-national levels of government. A case study methodology has been applied to four European countries i.e. Denmark, the UK, Portugal and Switzerland, in which IS emerged or is being fostered. The findings suggest that there are commonalities in policy instruments that may have led to an IS enabling context. The paper concludes with lessons learnt and recommendations on shaping the policy context for IS development.
Resumo:
The size-advantage model (SAM) explains the temporal variation of energetic investment on reproductive structures (i.e. male and female gametes and reproductive organs) in long-lived hermaphroditic plants and animals. It proposes that an increase in the resources available to an organism induces a higher relative investment on the most energetically costly sexual structures. In plants, pollination interactions are known to play an important role in the evolution of floral features. Because the SAM directly concerns flower characters, pollinators are expected to have a strong influence on the application of the model. This hypothesis, however, has never been tested. Here, we investigate whether the identity and diversity of pollinators can be used as a proxy to predict the application of the SAM in exclusive zoophilous plants. We present a new approach to unravel the dynamics of the model and test it on several widespread Arum (Araceae) species. By identifying the species composition, abundance and spatial variation of arthropods trapped in inflorescences, we show that some species (i.e. A. cylindraceum and A. italicum) display a generalist reproductive strategy, relying on the exploitation of a low number of dipterans, in contrast to the pattern seen in the specialist A. maculatum (pollinated specifically by two fly species only). Based on the model presented here, the application of the SAM is predicted for the first two and not expected in the latter species, those predictions being further confirmed by allometric measures. We here demonstrate that while an increase in the female zone occurs in larger inflorescences of generalist species, this does not happen in species demonstrating specific pollinators. This is the first time that this theory is both proposed and empirically tested in zoophilous plants. Its overall biological importance is discussed through its application in other non-Arum systems.
Resumo:
We advocate the advantage of an evolutionary approach to conservation biology that considers evolutionary history at various levels of biological organization. We review work on three separate plant taxa, spanning from one to multiple decades, illustrating extremes in metapopulation functioning. We show how the rare endemics Centaurea corymbosa (Clape Massif, France) and Brassica insularis in Corsica (France) may be caught in an evolutionary trap: disruption of metapopulation functioning due to lack of colonization of new sites may have counterselected traits such as dispersal ability or self-compatibility, making these species particularly vulnerable to any disturbance. The third case study concerns the evolution of life history strategies in the highly diverse genus Leucadendron of the South African fynbos. There, fire disturbance and the recolonization phase after fires are so integral to the functioning of populations that recruitment of new individuals is conditioned by fire. We show how past adaptation to different fire regimes and climatic constraints make species with different life history syndromes more or less vulnerable to global changes. These different case studies suggest that management strategies should promote evolutionary potential and evolutionary processes to better protect extant biodiversity and biodiversification.
Resumo:
The Cinque Torri group (Cortina d'Ampezzo, Italy) is an articulated system of unstable carbonatic rock monoliths located in a very important tourism area and therefore characterized by a significant risk. The instability phenomena involved represent an example of lateral spreading developed over a larger deep seated gravitational slope deformation (DSGSD) area. After the recent fall of a monolith of more than 10 000 m3, a scientific study was initiated to monitor the more unstable sectors and to characterize the past movements as a fundamental tool for predicting future movements and hazard assessment. To achieve greater insight on the ongoing lateral spreading process, a method for a quantitative analysis of rotational movements associated with the lateral spreading has been developed, applied and validated. The method is based on: i) detailed geometrical characterization of the area by means of laser scanner techniques; ii) recognition of the discontinuity sets and definition of a reference frame for each set, iii) correlation between the obtained reference frames related to a specific sector and a stable external reference frame, and iv) determination of the 3D rotations in terms of Euler angles to describe the present settlement of the Cinque Torri system with respect to the surrounding stable areas. In this way, significant information on the processes involved in the fragmentation and spreading of a former dolomitic plateau into different rock cliffs has been gained. The method is suitable to be applied to similar case studies.
Resumo:
AIM: The aim of this study was to evaluate a new pedagogical approach in teaching fluid, electrolyte and acid-base pathophysiology in undergraduate students. METHODS: This approach comprises traditional lectures, the study of clinical cases on the web and a final interactive discussion of these cases in the classroom. When on the web, the students are asked to select laboratory tests that seem most appropriate to understand the pathophysiological condition underlying the clinical case. The percentage of students having chosen a given test is made available to the teacher who uses it in an interactive session to stimulate discussion with the whole class of students. The same teacher used the same case studies during 2 consecutive years during the third year of the curriculum. RESULTS: The majority of students answered the questions on the web as requested and evaluated positively their experience with this form of teaching and learning. CONCLUSIONS: Complementing traditional lectures with online case-based studies and interactive group discussions represents, therefore, a simple means to promote the learning and the understanding of complex pathophysiological mechanisms. This simple problem-based approach to teaching and learning may be implemented to cover all fields of medicine.
Resumo:
Functional divergence between homologous proteins is expected to affect amino acid sequences in two main ways, which can be considered as proxies of biochemical divergence: a "covarion-like" pattern of correlated changes in evolutionary rates, and switches in conserved residues ("conserved but different"). Although these patterns have been used in case studies, a large-scale analysis is needed to estimate their frequency and distribution. We use a phylogenomic framework of animal genes to answer three questions: 1) What is the prevalence of such patterns? 2) Can we link such patterns at the amino acid level with selection inferred at the codon level? 3) Are patterns different between paralogs and orthologs? We find that covarion-like patterns are more frequently detected than "constant but different," but that only the latter are correlated with signal for positive selection. Finally, there is no obvious difference in patterns between orthologs and paralogs.
Resumo:
Les écosystèmes fournissent de nombreuses ressources et services écologiques qui sont utiles à la population humaine. La biodiversité est une composante essentielle des écosystèmes et maintient de nombreux services. Afin d'assurer la permanence des services écosystémiques, des mesures doivent être prises pour conserver la biodiversité. Dans ce but, l'acquisition d'informations détaillées sur la distribution de la biodiversité dans l'espace est essentielle. Les modèles de distribution d'espèces (SDMs) sont des modèles empiriques qui mettent en lien des observations de terrain (présences ou absences d'une espèce) avec des descripteurs de l'environnement, selon des courbes de réponses statistiques qui décrive la niche réalisée des espèces. Ces modèles fournissent des projections spatiales indiquant les lieux les plus favorables pour les espèces considérées. Le principal objectif de cette thèse est de fournir des projections plus réalistes de la distribution des espèces et des communautés en montagne pour le climat présent et futur en considérant non-seulement des variables abiotiques mais aussi biotiques. Les régions de montagne et l'écosystème alpin sont très sensibles aux changements globaux et en même temps assurent de nombreux services écosystémiques. Cette thèse est séparée en trois parties : (i) fournir une meilleure compréhension du rôle des interactions biotiques dans la distribution des espèces et l'assemblage des communautés en montagne (ouest des Alpes Suisses), (ii) permettre le développement d'une nouvelle approche pour modéliser la distribution spatiale de la biodiversité, (iii) fournir des projections plus réalistes de la distribution future des espèces ainsi que de la composition des communautés. En me focalisant sur les papillons, bourdons et plantes vasculaires, j'ai détecté des interactions biotiques importantes qui lient les espèces entre elles. J'ai également identifié la signature du filtre de l'environnement sur les communautés en haute altitude confirmant l'utilité des SDMs pour reproduire ce type de processus. A partir de ces études, j'ai contribué à l'amélioration méthodologique des SDMs dans le but de prédire les communautés en incluant les interactions biotiques et également les processus non-déterministes par une approche probabiliste. Cette approche permet de prédire non-seulement la distribution d'espèces individuelles, mais également celle de communautés dans leur entier en empilant les projections (S-SDMs). Finalement, j'ai utilisé cet outil pour prédire la distribution d'espèces et de communautés dans le passé et le futur. En particulier, j'ai modélisé la migration post-glaciaire de Trollius europaeus qui est à l'origine de la structure génétique intra-spécifique chez cette espèce et évalué les risques de perte face au changement climatique. Finalement, j'ai simulé la distribution des communautés de bourdons pour le 21e siècle afin d'évaluer les changements probables dans ce groupe important de pollinisateurs. La diversité fonctionnelle des bourdons va être altérée par la perte d'espèces spécialistes de haute altitude et ceci va influencer la pollinisation des plantes en haute altitude. - Ecosystems provide a multitude of resources and ecological services, which are useful to human. Biodiversity is an essential component of those ecosystems and guarantee many services. To assure the permanence of ecosystem services for future generation, measure should be applied to conserve biodiversity. For this purpose, the acquisition of detailed information on how biodiversity implicated in ecosystem function is distributed in space is essential. Species distribution models (SDMs) are empirical models relating field observations to environmental predictors based on statistically-derived response surfaces that fit the realized niche. These models result in spatial predictions indicating locations of the most suitable environment for the species and may potentially be applied to predict composition of communities and their functional properties. The main objective of this thesis was to provide more accurate projections of species and communities distribution under current and future climate in mountains by considering not solely abiotic but also biotic drivers of species distribution. Mountain areas and alpine ecosystems are considered as particularly sensitive to global changes and are also sources of essential ecosystem services. This thesis had three main goals: (i) a better ecological understanding of biotic interactions and how they shape the distribution of species and communities, (ii) the development of a novel approach to the spatial modeling of biodiversity, that can account for biotic interactions, and (iii) ecologically more realistic projections of future species distributions, of future composition and structure of communities. Focusing on butterfly and bumblebees in interaction with the vegetation, I detected important biotic interactions for species distribution and community composition of both plant and insects along environmental gradients. I identified the signature of environmental filtering processes at high elevation confirming the suitability of SDMs for reproducing patterns of filtering. Using those case-studies, I improved SDMs by incorporating biotic interaction and accounting for non-deterministic processes and uncertainty using a probabilistic based approach. I used improved modeling to forecast the distribution of species through the past and future climate changes. SDMs hindcasting allowed a better understanding of the spatial range dynamic of Trollius europaeus in Europe at the origin of the species intra-specific genetic diversity and identified the risk of loss of this genetic diversity caused by climate change. By simulating the future distribution of all bumblebee species in the western Swiss Alps under nine climate change scenarios for the 21st century, I found that the functional diversity of this pollinator guild will be largely affected by climate change through the loss of high elevation specialists. In turn, this will have important consequences on alpine plant pollination.
Resumo:
In therapy for chronic posttraumatic stress disorder (PTSD), prolonged exposure (PE) to stimuli associated with an original trauma experience is considered a state-of-the-art treatment method. The present case report outlines the use of Foa and Rothbaum's (1998) manual for this type of treatment in the year-long, 40-session treatment of Caroline, an adult female victim of child sexual abuse. The manual was supplemented by Caspar's (1995, 2007) Plan Analysis technique for individualized case formulation and treatment planning, along with Caspar's concept of the Motive-Oriented Therapeutic Relationship (MOTR). As indicated by standardized, quantitative measures, by changes in the client's behavior patterns, and by the client's subjective report, the treatment was very effective. An analysis of the therapy process illustrates the importance of a combination of manual-based procedures with individualized case formulations and interventions. The case is discussed in the context of enhancing the cognitive-behavioral treatment of PTSD.
Resumo:
Based on a high percentage of good results, retrospective studies strongly suggest that isolated talonavicular arthrodesis provides efficient pain relief and functional improvement in case of talonavicular arthritis in rheumatoid arthritis, primary or posttraumatic arthritis, flexible acquired flatfoot deformity, residual dorsolateral subluxation of the talonavicular joint after surgical treatment of clubfoot, and some neurologic disorders. However, prospective trials with rigorous methodology are required to establish evidence of efficacy for this procedure. Well-designed biomechanical studies have demonstrated the key role of the talonavicular joint in the complex hindfoot motion and may serve as baseline for further prospective studies.
Resumo:
Whether for investigative or intelligence aims, crime analysts often face up the necessity to analyse the spatiotemporal distribution of crimes or traces left by suspects. This article presents a visualisation methodology supporting recurrent practical analytical tasks such as the detection of crime series or the analysis of traces left by digital devices like mobile phone or GPS devices. The proposed approach has led to the development of a dedicated tool that has proven its effectiveness in real inquiries and intelligence practices. It supports a more fluent visual analysis of the collected data and may provide critical clues to support police operations as exemplified by the presented case studies.