33 resultados para Frozen foods.
Resumo:
Background and Aims: The international EEsAI study group is currently developing the first activity index specific for Eosinophilic Esophagitis (EoE). None of the existing dysphagia questionnaires takes into account the consistency of the ingested food that considerably impacts the symptom presentation. Goal: To develop an EoE-specific questionnaire assessing dysphagia associated with different food consistencies. Methods: Based on patient chart reviews, an expert panel (EEsAI study group) identified internationally standardized food prototypes typically associated with EoE-related dysphagia. Food consistencies were correlated with EoE-related dysphagia, also considering potential food avoidance. This Visual Dysphagia Questionnaire (VDQ) was then tested, as a pilot, in 10 EoE patients. Results: The following 9 food consistency prototypes were identified: water, soft foods (pudding, jelly), grits, toast bread, French fries, dry rice, ground meat, raw fibrous foods (eg. apple, carrot), solid meat. Dysphagia was ranked on a 5-point Likert scale (0=no difficulties, 5=very severe difficulties, food will not pass). Severity of dysphagia in the 10 EoE patients was related to the eosinophil load and presence of esophageal strictures. Conclusions: The VDQ will be the first EoE-specific tool for assessing dysphagia related to internationally defined food consistencies. It performed well in a pilot study and will now be further evaluated in a cohort study including 100 adult and 100 pediatric EoE patients.
Resumo:
Diet diversity (defined as the number of different foods consumed) has been considered an indicator of a healthy diet, and favorably related to the risk of several digestive tract cancers. We analyzed the relation between diet diversity and the risk of laryngeal cancer using data from a case-control study carried out between 1992 and 2000 in Italy and Switzerland. The subjects of the study were 527 patients with histologically confirmed incident cancers of the larynx and 1297 patients admitted for acute, non-neoplastic diseases, unrelated to tobacco or alcohol consumption. Total diversity was computed as the number of different foods (overall and within four food groups, i.e., vegetables, fruit, meat, and cereals) consumed at least once per week. A significant inverse association was observed for vegetable diversity (OR=0.41, 95% CI: 0.28-0.59, for the highest versus the lowest quartile) and fruit diversity (OR=0.40, 95% CI: 0.27-0.59). Conversely, a direct association was found for meat diversity (OR=1.67, 95% CI: 1.11-2.50), while no meaningful association was found for total diet and cereal diversity. The results were consistent across strata of age, alcohol drinking and tobacco smoking. This study suggests that a diet not only rich but also varied in fruit and vegetables is related to a decreased risk of laryngeal cancer risk.
Resumo:
BACKGROUND: Ethanol can account for up to 10 percent of the energy intake of persons who consume moderate amounts of ethanol. Its effect on energy metabolism, however, is not known. METHODS: We studied the effect of ethanol on 24-hour substrate-oxidation rates in eight normal men during two 48-hour sessions in an indirect-calorimetry chamber. In each session, the first 24 hours served as the control period. On the second day of one session, an additional 25 percent of the total energy requirement was added as ethanol (mean [+/- SD], 96 +/- 4 g per day); during the other session, 25 percent of the total energy requirement was replaced by ethanol, which was isocalorically substituted for lipids and carbohydrates. RESULTS: Both the addition of ethanol and the isocaloric substitution of ethanol for other foods reduced 24-hour lipid oxidation. The respective mean (+/- SE) decreases were 49.4 +/- 6.7 and 44.1 +/- 9.3 g per day (i.e., reductions of 36 +/- 3 percent and 31 +/- 7 percent from the oxidation rate during the control day; P less than 0.001 and P less than 0.0025). This effect occurred only during the daytime period (8:30 a.m. to 11:30 p.m.), when ethanol was consumed and metabolized. Neither the addition of ethanol to the diet nor the isocaloric substitution of ethanol for other foods significantly altered the oxidation of carbohydrate or protein. Both regimens including ethanol produced an increase in 24-hour energy expenditure (7 +/- 1 percent with the addition of ethanol, P less than 0.001; 4 +/- 1 percent with the substitution of ethanol for other energy sources, P less than 0.025). CONCLUSIONS: Ethanol, either added to the diet or substituted for other foods, increases 24-hour energy expenditure and decreases lipid oxidation. Habitual consumption of ethanol in excess of energy needs probably favors lipid storage and weight gain.
Resumo:
Trisomy-21 (Down syndrome) is the most frequent chromosomal abnorm- ality but only one third of cases would be detected by amniocentesis based on maternal age alone. Serum screening tests in the early second trimester increase the detec- tion rate to 60-65%, and more recently it was found that such screening was also possible in the first trimester by quantifying a diffe- rent panel of markers. The concen- trations of these placental proteins are strongly dependent on gestatio- nal age; thus control medians must be established and precise dating is essential. Serum chorionic gonado- trophin (HCG) levels were recently found to be increased in IVF preg- nancies compared to spontaneous gestations, leading to a falsely ele- vated trisomy screening risk. The aim of this preliminary study was to find out whether, in the first-trime- ster screening, the markers similarly differed between IVF and spontane- ous pregnancies which would call for the establishment of separate normal medians for IVF patients. We compared 24 pregnancies ob- tained after ovarian stimulation and IVF with six women after thawed embryo transfer (unstimulated cycle) and 63 gestation- and maternal-age matched spontaneously pregnant controls. A single serum was ob- tained between 6 and 16 weeks of gestation and various placental protein levels determined by im- munometric assays. Serum levels of pregnancy-associated plasma protein A (PAPP-A), which is the major marker in the first-trimes- ter screening test, were reduced in IVF pregnancies: after 9 weeks of gestation, multiples of median (MoMs) ranged between 0.23 and 3.58 (logarithmic mean 0.743). For the frozen/thawed transfers, this value was 1.08. In the 9-12 week group containing 6 cases of IVF, three thawed transfers and 25 con- trols, PAPP-A was significantly redu- ced in the stimulated compared to the nonstimulated cycles. In the late first and early second trimester the difference was not significant in our small group but the trend persisted. Pregnancies after IVF will thus show an increased incidence of false positive results in fetal trisomy-21 screening, and special medians should be established for these pati- ents.
Resumo:
Madin-Darby canine kidney cells (MDCK) were transfected with a cDNA encoding the glycosyl-phosphatidylinositol (GPI)-anchored protein mouse Thy-1 in order to study the steady-state surface distribution of exogenous and endogenous GPI-linked proteins. Immunofluorescence of transfected cells grown on collagen-coated coverslips showed that expression of Thy-1 was variable throughout the epithelium, with some cells expressing large amounts of Thy-1 adjacent to very faintly staining cells. Selective surface iodination of cells grown on collagen-coated or uncoated transwell filters followed by immunoprecipitation of Thy-1 demonstrated that all the Thy-1 was present exclusively in the apical plasma membrane. Although cells grown on uncoated filters had much smaller amounts of Thy-1, it was consistently localized on the apical surfaces. Immunofluorescent localization of Thy-1 on 1 micron frozen sections of filter-grown cells demonstrated that all the Thy-1 was on the apical surface and there was no detectable intracellular pool. Phosphatidylinositol-specific phospholipase C digestion of intact iodinated monolayers released Thy-1 only into the apical medium, indicating that Thy-1 was processed normally in transfected cells and was anchored by a GPI-tail. In agreement with previous findings, endogenous GPI-linked proteins were found only on the apical plasma membrane. These results suggest that there is a common mechanism for sorting and targeting of GPI-linked proteins in polarized epithelial cells.
Resumo:
For accurate and quantitative immunohistochemical localization of antigens it is crucial to know the solubility of tissue proteins and their degree of loss during processing. In this study we focused on the solubility of several cytoskeletal proteins in cat brain tissue at various ages and their loss during immunohistochemical procedures. We further examined whether fixation affected either solubility or immunocytochemical detectability of several cytoskeletal proteins. An assay was designed to measure the solubility of cytoskeletal proteins in cryostat sections. Quantity and quality of proteins lost or remaining in tissue were measured and analyzed by electrophoresis and immunoblots. Most microtubule proteins were found to be soluble in unfixed and alcohol fixed tissues. Furthermore, the microtubule proteins remaining in the tissue had a changed cellular distribution. In contrast, brain spectrin and all three neurofilament subunits were insoluble and remained in the tissue, allowing their immunocytochemical localization in alcohol-fixed tissue. Synapsin I, a protein associated with the spectrin cytoskeleton, was soluble, and aldehyde fixation is advised for its immunohistochemical localization. With aldehyde fixation, the immunoreactivity of some antibodies against neurofilament proteins was reduced in axons unveiling novel immunogenic sites in nuclei that may represent artifacts of fixation. In conclusion, protein solubility and the effects of fixation are influential factors in cytoskeletal immunohistochemistry, and should be considered before assessments for a quantitative distribution are made.
Resumo:
The thesis at hand is concerned with the spatio-temporal brain mechanisms of visual food perception as investigated by electrical neuroimaging. Due to the increasing prevalence of obesity and its associated challenges for public health care, there is a need to better understand behavioral and brain processes underlying food perception and food-based decision-making. The first study (Study A) of this thesis was concerned with the role of repeated exposure to visual food cues. In our everyday lives we constantly and repeatedly encounter food and these exposures influence our food choices and preferences. In Study A, we therefore applied electrical neuroimaging analyses of visual evoked potentials to investigate the spatio-temporal brain dynamics linked to the repeated viewing of high- and low-energy food cues (published manuscript: "The role of energetic value in dynamic brain response adaptation during repeated food image viewing" (Lietti et al., 2012)). In this study, we found that repetitions differentially affect behavioral and brain mechanisms when high-energy, as opposed to low-energy foods and non-food control objects, were viewed. The representation of high-energy food remained invariant between initial and repeated exposures indicating that the sight of high-energy dense food induces less behavioral and neural adaptation than the sight of low-energy food and non-food control objects. We discuss this finding in the context of the higher salience (due to greater motivation and higher reward or hedonic valuation) of energy- dense food that likely generates a more mnemonically stable representation. In turn, this more invariant representation of energy-dense food is supposed to (partially) explain why these foods are over-consumed despite of detrimental health consequences. In Study Β we investigated food responsiveness in patients who had undergone Roux-en-Y gastric bypass surgery to overcome excessive obesity. This type of gastric bypass surgery is not only known to alter food appreciation, but also the secretion patterns of adipokines and gut peptides. Study Β aimed at a comprehensive and interdisciplinary investigation of differences along the gut-brain axis in bypass-operated patients as opposed to weight-matched non-operated controls. On the one hand, the spatio-temporal brain dynamics to the visual perception of high- vs. low-energy foods under differing states of motivation towards food intake (i.e. pre- and post-prandial) were assessed and compared between groups. On the other hand, peripheral gut hormone measures were taken in pre- and post-prandial nutrition state and compared between groups. In order to evaluate alterations in the responsiveness along the gut-brain-axis related to gastric bypass surgery, correlations between both measures were compared between both participant groups. The results revealed that Roux-en- Y gastric bypass surgery alters the spatio-temporal brain dynamics to the perception of high- and low-energy food cues, as well as the responsiveness along the gut-brain-axis. The potential role of these response alterations is discussed in relation to previously observed changes in physiological factors and food intake behavior post-Roux-en-Y gastric bypass surgery. By doing so, we highlight potential behavioral, neural and endocrine (i.e. gut hormone) targets for the future development of intervention strategies for deviant eating behavior and obesity. Together, the studies showed that the visual representation of foods in the brain is plastic and that modulations in neural activity are already noted at early stages of visual processing. Different factors of influence such as a repeated exposure, Roux-en-Y gastric bypass surgery, motivation (nutrition state), as well as the energy density of the visually perceived food were identified. En raison de la prévalence croissante de l'obésité et du défi que cela représente en matière de santé publique, une meilleure compréhension des processus comportementaux et cérébraux liés à la nourriture sont nécessaires. En particulier, cette thèse se concentre sur l'investigation des mécanismes cérébraux spatio-temporels liés à la perception visuelle de la nourriture. Nous sommes quotidiennement et répétitivement exposés à des images de nourriture. Ces expositions répétées influencent nos choix, ainsi que nos préférences alimentaires. La première étude (Study A) de cette thèse investigue donc l'impact de ces exposition répétée à des stimuli visuels de nourriture. En particulier, nous avons comparé la dynamique spatio-temporelle de l'activité cérébrale induite par une exposition répétée à des images de nourriture de haute densité et de basse densité énergétique. (Manuscrit publié: "The role of energetic value in dynamic brain response adaptation during repeated food image viewing" (Lietti et al., 2012)). Dans cette étude, nous avons pu constater qu'une exposition répétée à des images représentant de la nourriture de haute densité énergétique, par opposition à de la nourriture de basse densité énergétique, affecte les mécanismes comportementaux et cérébraux de manière différente. En particulier, la représentation neurale des images de nourriture de haute densité énergétique est similaire lors de l'exposition initiale que lors de l'exposition répétée. Ceci indique que la perception d'images de nourriture de haute densité énergétique induit des adaptations comportementales et neurales de moindre ampleur par rapport à la perception d'images de nourriture de basse densité énergétique ou à la perception d'une « catégorie contrôle » d'objets qui ne sont pas de la nourriture. Notre discussion est orientée sur les notions prépondérantes de récompense et de motivation qui sont associées à la nourriture de haute densité énergétique. Nous suggérons que la nourriture de haute densité énergétique génère une représentation mémorielle plus stable et que ce mécanisme pourrait (partiellement) être sous-jacent au fait que la nourriture de haute densité énergétique soit préférentiellement consommée. Dans la deuxième étude (Study Β) menée au cours de cette thèse, nous nous sommes intéressés aux mécanismes de perception de la nourriture chez des patients ayant subi un bypass gastrique Roux- en-Y, afin de réussir à perdre du poids et améliorer leur santé. Ce type de chirurgie est connu pour altérer la perception de la nourriture et le comportement alimentaire, mais également la sécrétion d'adipokines et de peptides gastriques. Dans une approche interdisciplinaire et globale, cette deuxième étude investigue donc les différences entre les patients opérés et des individus « contrôles » de poids similaire au niveau des interactions entre leur activité cérébrale et les mesures de leurs hormones gastriques. D'un côté, nous avons investigué la dynamique spatio-temporelle cérébrale de la perception visuelle de nourriture de haute et de basse densité énergétique dans deux états physiologiques différent (pre- et post-prandial). Et de l'autre, nous avons également investigué les mesures physiologiques des hormones gastriques. Ensuite, afin d'évaluer les altérations liées à l'intervention chirurgicale au niveau des interactions entre la réponse cérébrale et la sécrétion d'hormone, des corrélations entre ces deux mesures ont été comparées entre les deux groupes. Les résultats révèlent que l'intervention chirurgicale du bypass gastrique Roux-en-Y altère la dynamique spatio-temporelle de la perception visuelle de la nourriture de haute et de basse densité énergétique, ainsi que les interactions entre cette dernière et les mesures périphériques des hormones gastriques. Nous discutons le rôle potentiel de ces altérations en relation avec les modulations des facteurs physiologiques et les changements du comportement alimentaire préalablement déjà démontrés. De cette manière, nous identifions des cibles potentielles pour le développement de stratégies d'intervention future, au niveau comportemental, cérébral et endocrinien (hormones gastriques) en ce qui concerne les déviances du comportement alimentaire, dont l'obésité. Nos deux études réunies démontrent que la représentation visuelle de la nourriture dans le cerveau est plastique et que des modulations de l'activité neurale apparaissent déjà à un stade très précoce des mécanismes de perception visuelle. Différents facteurs d'influence comme une exposition repetee, le bypass gastrique Roux-en-Y, la motivation (état nutritionnel), ainsi que la densité énergétique de la nourriture qui est perçue ont pu être identifiés.
Resumo:
The structure of the yeast DNA-dependent RNA polymerase I (RNA Pol I), prepared by cryo-negative staining, was studied by electron microscopy. A structural model of the enzyme at a resolution of 1.8 nm was determined from the analysis of isolated molecules and showed an excellent fit with the atomic structure of the RNA Pol II Delta4/7. The high signal-to-noise ratio (SNR) of the stained molecular images revealed a conformational flexibility within the image data set that could be recovered in three-dimensions after implementation of a novel strategy to sort the "open" and "closed" conformations in our heterogeneous data set. This conformational change mapped in the "wall/flap" domain of the second largest subunit (beta-like) and allows a better accessibility of the DNA-binding groove. This displacement of the wall/flap domain could play an important role in the transition between initiation and elongation state of the enzyme. Moreover, a protrusion was apparent in the cryo-negatively stained model, which was absent in the atomic structure and was not detected in previous 3D models of RNA Pol I. This structure could, however, be detected in unstained views of the enzyme obtained from frozen hydrated 2D crystals, indicating that this novel feature is not induced by the staining process. Unexpectedly, negatively charged molybdenum compounds were found to accumulate within the DNA-binding groove, which is best explained by the highly positive electrostatic potential of this region of the molecule, thus, suggesting that the stain distribution reflects the overall surface charge of the molecule.
Resumo:
The glucose transporter isoform GLUT2 is expressed in liver, intestine, kidney and pancreatic islet beta cells, as well as in the central nervous system, in neurons, astrocytes and tanycytes. Physiological studies of genetically modified mice have revealed a role for GLUT2 in several regulatory mechanisms. In pancreatic beta cells, GLUT2 is required for glucose-stimulated insulin secretion. In hepatocytes, suppression of GLUT2 expression revealed the existence of an unsuspected glucose output pathway that may depend on a membrane traffic-dependent mechanism. GLUT2 expression is nevertheless required for the physiological control of glucose-sensitive genes, and its inactivation in the liver leads to impaired glucose-stimulated insulin secretion, revealing a liver-beta cell axis, which is likely to be dependent on bile acids controlling beta cell secretion capacity. In the nervous system, GLUT2-dependent glucose sensing controls feeding, thermoregulation and pancreatic islet cell mass and function, as well as sympathetic and parasympathetic activities. Electrophysiological and optogenetic techniques established that Glut2 (also known as Slc2a2)-expressing neurons of the nucleus tractus solitarius can be activated by hypoglycaemia to stimulate glucagon secretion. In humans, inactivating mutations in GLUT2 cause Fanconi-Bickel syndrome, which is characterised by hepatomegaly and kidney disease; defects in insulin secretion are rare in adult patients, but GLUT2 mutations cause transient neonatal diabetes. Genome-wide association studies have reported that GLUT2 variants increase the risks of fasting hyperglycaemia, transition to type 2 diabetes, hypercholesterolaemia and cardiovascular diseases. Individuals with a missense mutation in GLUT2 show preference for sugar-containing foods. We will discuss how studies in mice help interpret the role of GLUT2 in human physiology.
Resumo:
As a constantly evolving set of complex biotechnologies, medically assisted procreation (MAP) jeopardises a category that seems to be taken for granted: that of 'natural'. What is 'natural' or not when MAP is used to procreate? What are the boundaries between a 'natural' and a 'non-natural' fertilisation? Drawing upon a dialogical approach to language and cognition, our study examined the semantic field of the category 'natural' as expressed in interviews between a psychiatrist and seven couples who resorted to MAP and had to decide whether to keep their frozen pre-embryonic cells (zygotes) for further procreation or to allow them be destroyed. We examined how these couples evoked the category 'natural' and showed that in their argumentation, the category 'natural' encompassed a wide variety of phenomena, which shifted the boundaries between the 'natural' and 'non-natural'. In so doing, the couples 'renaturalised' MAP, normalized it, moved the boundaries between what is legitimate or not, and showed their accountability. Hence, reference to the category 'natural' seemed to act both as an argumentative and a psychological resource in the elaboration of the person's experience in resorting to MAP.
Resumo:
OBJECTIVE: To review the mechanisms underlying the metabolic syndrome, or syndrome X, in humans, and to delineate dietary and environmental strategies for its prevention. DESIGN: Review of selected papers of the literature. RESULTS: Hyperinsulinemia and insulin resistance play a key role in the development of the metabolic syndrome. Strategies aimed at reducing insulin resistance may be effective in improving the metabolic syndrome. They include low saturated fat intake, consumption of low-glycemic-index foods, physical exercise and prevention of obesity. CONCLUSIONS: Future research, in particular the genetic basis of the metabolic syndrome and the interorgan interactions responsible for insulin resistance, is needed to improve therapeutic strategies for the metabolic syndrome.
Resumo:
This paper offers a reflection on the family life and that of the siblings of a child with cancer. We will present our intervention model developed jointly by the pediatric oncology and the pediatric psychiatry units at the University Hospital CHUV in Lausanne. It is known that siblings show difficulties in dealing with the ambivalent emotions triggered by the sickness of a brother or sister. Their defence mechanisms can be heavy and may have consequences on the child's psycho-affective development and on the dynamics of the whole family. Speech groups allow the siblings to unfold an experience which is often irrepresentable. They also permit remobilization of affects frozen by the illness. This model used since 2006 in our unit responds to the wish to improve the quality of care of heavily sick children.
Resumo:
Background: The purpose of the work reported here is to test reliable molecular profiles using routinely processed formalin-fixed paraffin-embedded (FFPE) tissues from participants of the clinical trial BIG 1-98 with a median follow-up of 60 months. Methods: RNA from fresh frozen (FF) and FFPE tumor samples of 82 patients were used for quality control, and independent FFPE tissues of 342 postmenopausal participants of BIG 1-98 with ER-positive cancer were analyzed by measuring prospectively selected genes and computing scores representing the functions of the estrogen receptor (eight genes, ER_8), the progesterone receptor (five genes, PGR_5), Her2 (two genes, HER2_2), and proliferation (ten genes, PRO_10) by quantitative reverse transcription PCR (qRT-PCR) on TaqMan Low Density Arrays. Molecular scores were computed for each category and ER_8, PGR_5, HER2_2, and PRO_10 scores were combined into a RISK_25 score. Results: Pearson correlation coefficients between FF- and FFPE-derived scores were at least 0.94 and high concordance was observed between molecular scores and immunohistochemical data. The HER2_2, PGR_ 5, PRO_10 and RISK_25 scores were significant predictors of disease free-survival (DFS) in univariate Cox proportional hazard regression. PRO_10 and RISK_25 scores predicted DFS in patients with histological grade II breast cancer and in lymph node positive disease. The PRO_10 and PGR_ 5 scores were independent predictors of DFS in multivariate Cox regression models incorporating clinical risk indicators; PRO_10 outperformed Ki-67 labeling index in multivariate Cox proportional hazard analyses. Conclusions: Scores representing the endocrine responsiveness and proliferation status of breast cancers were developed from gene expression analyses based on RNA derived from FFPE tissues. The validation of the molecular scores with tumor samples of participants of the BIG 1-98 trial demonstrates that such scores can serve as independent prognostic factors to estimate disease free survival (DFS) in postmenopausal patients with estrogen receptor positive breast cancer.
Resumo:
Reconstructive procedures after resection of nasal basal cell carcinoma (BCC) vary depending on the subunit involved. The aim of the present study was to assess the influence of the location of the BCC on the rate of incomplete excisions, so we made a retrospective analysis of all nasal BCC excised at our hospital between 2002 and 2005. The incomplete excision rate was 24/148 (16%). More incomplete excision occurred on the alae (n=13) when compared to the dorsum (n=2) of the nose (p<0.05). Eight two-staged procedures resulted in incomplete resection, whereas 9 (6%) frozen section analyses were false-negative. BCC were most likely to be incompletely excised on the nasal tip and alae, and both subunits required more elaborate reconstructions. This, however, was not the result of poor estimation of the extent of the tumour and reluctance to excise more challenging areas widely for reconstruction, but to the method chosen to eradicate the tumour.
Resumo:
Cryo-electron microscopy of vitreous sections (CEMOVIS) has recently been shown to provide images of biological specimens with unprecedented quality and resolution. Cutting the sections remains however the major difficulty. Here, we examine the parameters influencing the quality of the sections and analyse the resulting artefacts. They are in particular: knife marks, compression, crevasses, and chatter. We propose a model taking into account the interplay between viscous flow and fracture. We confirm that crevasses are formed on only one side of the section, and define conditions by which they can be avoided. Chatter is an effect of irregular compression due to friction of the section of the knife edge and conditions to prevent this are also explored. In absence of crevasses and chatter, the bulk of the section is compressed approximately homogeneously. Within this approximation, it is possible to correct for compression by a simple linear transformation for the bulk of the section. A research program is proposed to test and refine our understanding of the sectioning process.