36 resultados para Frontal Brain Asymmetry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of ochratoxin A (OTA) to damage brain cells was studied by using a three-dimensional cell culture system as model for the developing brain. Aggregating cell cultures of foetal rat telencephalon were tested either during an early developmental period, or during a phase of advanced maturation, over a wide range of OTA concentrations (0.4 nM to 50 microM). By monitoring changes in activities of cell type-specific enzymes (ChAt and GAD, for cholinergic and GABAergic neurones, respectively, GS for astrocytes and CNP for oligodendrocytes), the concentration-dependent toxicity and neurodevelopmental effects of OTA were determined. OTA proved to be highly toxic, since a 10-day treatment at 50 nM caused a general cytotoxicity in both mature and immature cultures. At 10 nM of OTA, cell type-specific effects were observed: in immature cultures, a loss in neuronal and oligodendroglial enzyme activities, and an increase in the activity of the astroglial marker glutamine synthetase were found, Furthermore, at 2 and 10 nM of OTA, a clustering of microglial cells was observed. In mature cultures, OTA was somewhat less potent, but caused a similar pattern of toxic effects. A 24 h-treatment with OTA resulted in a concentration-dependent decrease in protein synthesis, with IC50 values of 25 nM and 33 nM for immature and mature cultures respectively. Acute (24 h) treatment at high OTA concentrations (10 to 50 microM) caused a significant increase in reactive oxygen species formation, as measured by the intracellular oxidation of 2',7'-dichlorofluorescin. These results suggest that OTA has the potential to be a potent toxicant to brain cells, and that its effects at nanomolar concentrations are primarily due to the inhibition of protein synthesis, whereas ROS seem not to be involved in the toxicity mediated by a chronic exposure to OTA at such low concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural stem cells have been proposed as a new and promising treatment modality in various pathologies of the central nervous system, including malignant brain tumors. However, the underlying mechanism by which neural stem cells target tumor areas remains elusive. Monitoring of these cells is currently done by use of various modes of molecular imaging, such as optical imaging, magnetic resonance imaging and positron emission tomography, which is a novel technology for visualizing metabolism and signal transduction to gene expression. In this new context, the microenvironment of (malignant) brain tumors and the blood-brain barrier gains increased interest. The authors of this review give a unique overview of the current molecular-imaging techniques used in different therapeutic experimental brain tumor models in relation to neural stem cells. Such methods for molecular imaging of gene-engineered neural stem/progenitor cells are currently used to trace the location and temporal level of expression of therapeutic and endogenous genes in malignant brain tumors, closing the gap between in vitro and in vivo integrative biology of disease in neural stem cell transplantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the contribution of inflammatory processes in the etiology of late-onset Alzheimer's disease (AD) has been suspected for years, most studies were confined to the analysis of cell-mediated immunological reactions thought to represent an epiphenomenon of AD lesion development. Based on the traditional view of the "immunological privilege" of the brain, which excludes a direct access of human immunoglobulins (Ig) to the central nervous system under normal conditions, little attention has been paid to a possible role of humoral immunity in AD pathogenesis. In the first part of this review, we summarize evidences for a blood-brain barrier (BBB) dysfunction in this disorder and critically comment on earlier observations supporting the presence of anti-brain autoantibodies and immunoglobulins (Ig) in AD brains. Current concepts regarding the Ig turnover in the central nervous system and the mechanisms of glial and neuronal Fc receptors activation are also discussed. In the second part, we present new ex vivo and in vitro data suggesting that human immunoglobulins can interact with tau protein and alter both the dynamics and structural organization of microtubules. Subsequent experiments needed to test this new working hypothesis are addressed at the end of the review.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Management of brain arteriovenous malformation (bAVM) is controversial. We have analyzed the largest surgical bAVM cohort for outcome. METHODS: Both operated and nonoperated cases were included for analysis. A total of 779 patients with bAVMs were consecutively enrolled between 1989 and 2014. Initial management recommendations were recorded before commencement of treatment. Surgical outcome was prospectively recorded and outcomes assigned at the last follow-up visit using modified Rankin Scale. First, a sensitivity analyses was performed to select a subset of the entire cohort for which the results of surgery could be generalized. Second, from this subset, variables were analyzed for risk of deficit or near miss (intraoperative hemorrhage requiring blood transfusion of ≥2.5 L, hemorrhage in resection bed requiring reoperation, and hemorrhage associated with either digital subtraction angiography or embolization). RESULTS: A total of 7.7% of patients with Spetzler-Ponce classes A and B bAVM had an adverse outcome from surgery leading to a modified Rankin Scale >1. Sensitivity analyses that demonstrated outcome results were not subject to selection bias for Spetzler-Ponce classes A and B bAVMs. Risk factors for adverse outcomes from surgery for these bAVMs include size, presence of deep venous drainage, and eloquent location. Preoperative embolization did not affect the risk of perioperative hemorrhage. CONCLUSIONS: Most of the ruptured and unruptured low and middle-grade bAVMs (Spetzler-Ponce A and B) can be surgically treated with a low risk of permanent morbidity and a high likelihood of preventing future hemorrhage. Our results do not apply to Spetzler-Ponce C bAVMs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain-derived neurotrophic factor (BDNF) promotes synaptic plasticity via an enhancement in expression of specific synaptic proteins. Recent results suggest that the neuronal monocarboxylate transporter MCT2 is a postsynaptic protein critically involved in synaptic plasticity and long-term memory. To investigate in vivo whether BDNF can modulate the expression of MCT2 as well as other proteins involved in synaptic plasticity, acute injection of BDNF was performed in mouse dorsal hippocampal CA1 area. Using immunohistochemistry, it was found that MCT2 expression was enhanced in part of the CA1 area and in the dentate gyrus 6 h after a single intrahippocampal injection of BDNF. Similarly, expression of the immediate early genes Arc and Zif268 was enhanced in the same hippocampal areas, in accordance with their role in synaptic plasticity. Immunoblot analysis confirmed the significant enhancement in MCT2 protein expression. In contrast, no changes were observed for the glial monocarboxylate transporters MCT1 and MCT4. When other synaptic proteins were investigated, it was found that postsynaptic density 95 (PSD95) and glutamate receptor 2 (GluR2) protein levels were significantly enhanced while no effect could be detected for synaptophysin, synaptosomal-associated protein 25 (SNAP25), αCaMKII and GluR1. These results demonstrate that MCT2 expression can be upregulated together with other key postsynaptic proteins in vivo under conditions related to synaptic plasticity, further suggesting the importance of energetics for memory formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have demonstrated that non-demented Parkinson's disease (PD) patients have a specific impairment of verb production compared with noun generation. One interpretation of this deficit suggested the influence of striato-frontal dysfunction on action-related verb processing. The aim of our study was to investigate cerebral changes after motor improvement due to dopaminergic medication on the neural circuitry supporting action representation in the brain as mediated by verb generation and motor imagery in PD patients. Functional magnetic resonance imaging on 8 PD patients in "ON" dopaminergic treatment state (DTS) and in "OFF" DTS was used to explore the brain activity during three different tasks: Object Naming (ObjN), Generation of Action Verbs (GenA) in which patients were asked to overtly say an action associated with a picture and mental simulation of action (MSoA) was investigated by asking subjects to mentally simulate an action related to a depicted object. The distribution of brain activities associated with these tasks whatever DTS was very similar to results of previous studies. The results showed that brain activity related to semantics of action is modified by dopaminergic treatment in PD patients. This cerebral reorganisation concerns mainly motor and premotor cortex suggesting an involvement of the putaminal motor loop according to the "motor" theory of verb processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We addressed the questions of how cerebral glucose transport and phosphorylation change under acute hypoglycemia and what the underlying mechanisms of adaptation are. METHODS: Quantitative (18)F-FDG PET combined with the acquisition of real-time arterial input function was performed on mice. Hypoglycemia was induced and maintained by insulin infusion. PET data were analyzed with the 2-tissue-compartment model for (18)F-FDG, and the results were evaluated with Michaelis-Menten saturation kinetics. RESULTS: Glucose clearance from plasma to brain (K1,glc) and the phosphorylation rate constant increased with decreasing plasma glucose (Gp), in particular at a Gp of less than 2.5 mmol/L. Estimated cerebral glucose extraction ratios taking into account an increased cerebral blood flow (CBF) at a Gp of less than 2 mmol/L were between 0.14 and 0.79. CBF-normalized K1,glc values were in agreement with saturation kinetics. Phosphorylation rate constants indicated intracellular glucose depletion at a Gp of less than 2-3 mmol/L. When brain regions were compared, glucose transport under hypoglycemia was lowest in the hypothalamus. CONCLUSION: Alterations in glucose transport and phosphorylation, as well as intracellular glucose depletion, under acute hypoglycemia can be modeled by saturation kinetics taking into account an increase in CBF. Distinct transport kinetics in the hypothalamus may be involved in its glucose-sensing function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

den Dunnen et al. [den Dunnen, W.F.A., Brouwer, W.H., Bijlard, E., Kamphuis, J., van Linschoten, K., Eggens-Meijer, E., Holstege, G., 2008. No disease in the brain of a 115-year-old woman. Neurobiol. Aging] had the opportunity to follow up the cognitive functioning of one of the world's oldest woman during the last 3 years of her life. They performed two neuropsychological evaluations at age 112 and 115 that revealed a striking preservation of immediate recall abilities and orientation. In contrast, working memory, retrieval from semantic memory and mental arithmetic performances declined after age 112. Overall, only a one-point decrease of MMSE score occurred (from 27 to 26) reflecting the remarkable preservation of cognitive abilities. The neuropathological assessment showed few neurofibrillary tangles (NFT) in the hippocampal formation compatible with Braak staging II, absence of amyloid deposits and other types of neurodegenerative lesions as well as preservation of neuron numbers in locus coeruleus. This finding was related to a striking paucity of Alzheimer disease (AD)-related lesions in the hippocampal formation. The present report parallels the early descriptions of rare "supernormal" centenarians supporting the dissociation between brain aging and AD processes. In conjunction with recent stereological analyses in cases aged from 90 to 102 years, it also points to the marked resistance of the hippocampal formation to the degenerative process in this age group and possible dissociation between the occurrence of slight cognitive deficits and development of AD-related pathologic changes in neocortical areas. This work is discussed in the context of current efforts to identify the biological and genetic parameters of human longevity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To evaluate the effects of recent advances in magnetic resonance imaging (MRI) radiofrequency (RF) coil and parallel imaging technology on brain volume measurement consistency. MATERIALS AND METHODS: In all, 103 whole-brain MRI volumes were acquired at a clinical 3T MRI, equipped with a 12- and 32-channel head coil, using the T1-weighted protocol as employed in the Alzheimer's Disease Neuroimaging Initiative study with parallel imaging accelerations ranging from 1 to 5. An experienced reader performed qualitative ratings of the images. For quantitative analysis, differences in composite width (CW, a measure of image similarity) and boundary shift integral (BSI, a measure of whole-brain atrophy) were calculated. RESULTS: Intra- and intersession comparisons of CW and BSI measures from scans with equal acceleration demonstrated excellent scan-rescan accuracy, even at the highest acceleration applied. Pairs-of-scans acquired with different accelerations exhibited poor scan-rescan consistency only when differences in the acceleration factor were maximized. A change in the coil hardware between compared scans was found to bias the BSI measure. CONCLUSION: The most important findings are that the accelerated acquisitions appear to be compatible with the assessment of high-quality quantitative information and that for highest scan-rescan accuracy in serial scans the acquisition protocol should be kept as consistent as possible over time. J. Magn. Reson. Imaging 2012;36:1234-1240. ©2012 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Mutism and dense retrograde amnesia are found both in organic and dissociative contexts. Moreover, dissociative symptoms may be modulated by right prefrontal activity. A single case, M.R., developed left hemiparesis, mutism and retrograde amnesia after a high-voltage electric shock without evidence of lasting brain lesions. M.R. suddenly recovered from his mutism following a mild brain trauma 2 years later. Methods: M.R.'s neuropsychological pattern and anatomoclinical correlations were studied through (i) language and memory assessment to characterize his deficits, (ii) functional neuroimaging during a standard language paradigm, and (iii) assessment of frontal and left insular connectivity through diffusion tractography imaging and transcranial magnetic stimulation. A control evaluation was repeated after recovery. Findings: M.R. recovered from the left hemiparesis within 90 days of the accident, which indicated a transient right brain impairment. One year later, neurobehavioral, language and memory evaluations strongly suggested a dissociative component in the mutism and retrograde amnesia. Investigations (including MRI, fMRI, diffusion tensor imaging, EEG and r-TMS) were normal. Twenty-seven months after the electrical injury, M.R. had a very mild head injury which was followed by a rapid recovery of speech. However, the retrograde amnesia persisted. Discussion: This case indicates an interaction of both organic and dissociative mechanisms in order to explain the patient's symptoms. The study also illustrates dissociation in the time course of the two different dissociative symptoms in the same patient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lithium-pilocarpine model mimics most features of human temporal lobe epilepsy. Following our prior studies of cerebral metabolic changes, here we explored the expression of transporters for glucose (GLUT1 and GLUT3) and monocarboxylates (MCT1 and MCT2) during and after status epilepticus (SE) induced by lithium-pilocarpine in PN10, PN21, and adult rats. In situ hybridization was used to study the expression of transporter mRNAs during the acute phase (1, 4, 12 and 24h of SE), the latent phase, and the early and late chronic phases. During SE, GLUT1 expression was increased throughout the brain between 1 and 12h of SE, more strongly in adult rats; GLUT3 increased only transiently, at 1 and 4h of SE and mainly in PN10 rats; MCT1 was increased at all ages but 5-10-fold more in adult than in immature rats; MCT2 expression increased mainly in adult rats. At all ages, MCT1 and MCT2 up-regulation was limited to the circuit of seizures while GLUT1 and GLUT3 changes were more widespread. During the latent and chronic phases, the expression of nutrient transporters was normal in PN10 rats. In PN21 rats, GLUT1 was up-regulated in all brain regions. In contrast, in adult rats GLUT1 expression was down-regulated in the piriform cortex, hilus and CA1 as a result of extensive neuronal death. The changes in nutrient transporter expression reported here further support previous findings in other experimental models demonstrating rapid transcriptional responses to marked changes in cerebral energetic/glucose demand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate perception of the order of occurrence of sensory information is critical for the building up of coherent representations of the external world from ongoing flows of sensory inputs. While some psychophysical evidence reports that performance on temporal perception can improve, the underlying neural mechanisms remain unresolved. Using electrical neuroimaging analyses of auditory evoked potentials (AEPs), we identified the brain dynamics and mechanism supporting improvements in auditory temporal order judgment (TOJ) during the course of the first vs. latter half of the experiment. Training-induced changes in brain activity were first evident 43-76 ms post stimulus onset and followed from topographic, rather than pure strength, AEP modulations. Improvements in auditory TOJ accuracy thus followed from changes in the configuration of the underlying brain networks during the initial stages of sensory processing. Source estimations revealed an increase in the lateralization of initially bilateral posterior sylvian region (PSR) responses at the beginning of the experiment to left-hemisphere dominance at its end. Further supporting the critical role of left and right PSR in auditory TOJ proficiency, as the experiment progressed, responses in the left and right PSR went from being correlated to un-correlated. These collective findings provide insights on the neurophysiologic mechanism and plasticity of temporal processing of sounds and are consistent with models based on spike timing dependent plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are only a few studies on the ontogeny and differentiation process of the hypothalamic supraoptic-paraventriculo-neurohypophysial neurosecretory system. In vitro neuron survival improves if cells are of embryonic origin; however, surviving hypothalamic neurons in culture were found to express small and minimal amounts of arginine-vasopressin (AVP) and oxytocin (OT), respectively. The aim of this study was to develop a primary neuronal culture design applicable to the study of magnocellular hypothalamic system functionality. For this purpose, a primary neuronal culture was set up after mechanical dissociation of sterile hypothalamic blocks from 17-day-old Sprague-Dawley rat embryos (E17) of both sexes. Isolated hypothalamic cells were cultured with supplemented (B27)-NeuroBasal medium containing an agent inhibiting non-neuron cell proliferation. The neurosecretory process was characterized by detecting AVP and OT secreted into the medium on different days of culture. Data indicate that spontaneous AVP and OT release occurred in a culture day-dependent fashion, being maximal on day 13 for AVP, and on day 10 for OT. Interestingly, brain-derived neurotrophic factor (BDNF) and Angiotensin II (A II) were able to positively modulate neuropeptide output. Furthermore, on day 17 of culture, non-specific (high-KCl) and specific (Angiotensin II) stimuli were able to significantly (P < 0.05) enhance the secretion of both neuropeptides over respective baselines. This study suggests that our experimental design is useful for the study of AVP- and OT-ergic neuron functionality and that BDNF and A II are positive modulators of embryonic hypothalamic cell development.