56 resultados para Fractional-order calculus
Resumo:
Since the 1990s, and especially since the early 2000s, passionate controversies (Göle 2014) have emerged around the new visibility of Islam in the public sphere across Europe. These controversies, which crystallized in the headscarf debate, seem even more disturbing given that women who wear it are often young, urban and educated: that is to say, "modern" (Göle 1997, 2011). Indeed, these young women wearing the hijab seem to disrupt the narrative of Western modernity, including the decline in religious practice (Hervieu-Léger 2006) or the narration of the process of secularization in Europe. It is in the context of these controversies that Islam is built imaginatively as a "public problem" that has to be "solved" (Behloul 2012). Thus, this social construction of the Muslim other has nurtured an assessment of the failure of multiculturalism in some European countries and a process of convergence around a single model of civic integration in Europe (Behloul 2012, Joppke 2004, 2010).
Resumo:
OBJECTIVE: To assess the change in non-compliant items in prescription orders following the implementation of a computerized physician order entry (CPOE) system named PreDiMed. SETTING: The department of internal medicine (39 and 38 beds) in two regional hospitals in Canton Vaud, Switzerland. METHOD: The prescription lines in 100 pre- and 100 post-implementation patients' files were classified according to three modes of administration (medicines for oral or other non-parenteral uses; medicines administered parenterally or via nasogastric tube; pro re nata (PRN), as needed) and analyzed for a number of relevant variables constitutive of medical prescriptions. MAIN OUTCOME MEASURE: The monitored variables depended on the pharmaceutical category and included mainly name of medicine, pharmaceutical form, posology and route of administration, diluting solution, flow rate and identification of prescriber. RESULTS: In 2,099 prescription lines, the total number of non-compliant items was 2,265 before CPOE implementation, or 1.079 non-compliant items per line. Two-thirds of these were due to missing information, and the remaining third to incomplete information. In 2,074 prescription lines post-CPOE implementation, the number of non-compliant items had decreased to 221, or 0.107 non-compliant item per line, a dramatic 10-fold decrease (chi(2) = 4615; P < 10(-6)). Limitations of the computerized system were the risk for erroneous items in some non-prefilled fields and ambiguity due to a field with doses shown on commercial products. CONCLUSION: The deployment of PreDiMed in two departments of internal medicine has led to a major improvement in formal aspects of physicians' prescriptions. Some limitations of the first version of PreDiMed were unveiled and are being corrected.
Resumo:
Introduction: Coronary magnetic resonance angiography (MRA) is a medical imaging technique that involves collecting data from consecutive heartbeats, always at the same time in the cardiac cycle, in order to minimize heart motion artifacts. This technique relies on the assumption that coronary arteries always follow the same trajectory from heartbeat to heartbeat. Until now, choosing the acquisition window in the cardiac cycle was based exclusively on the position of minimal coronary motion. The goal of this study was to test the hypothesis that there are time intervals during the cardiac cycle when coronary beat-to-beat repositioning is optimal. The repositioning uncertainty values in these time intervals were then compared with the intervals of low coronary motion in order to propose an optimal acquisition window for coronary MRA. Methods: Cine breath-hold x-ray angiograms with synchronous ECG were collected from 11 patients who underwent elective routine diagnostic coronarography. Twenty-three bifurcations of the left coronary artery were selected as markers to evaluate repositioning uncertainty and velocity during cardiac cycle. Each bifurcation was tracked by two observers, with the help of a user-assisted algorithm implemented in Matlab (The Mathworks, Natick, MA, USA) that compared the trajectories of the markers coming from consecutive heartbeats and computed the coronary repositioning uncertainty with steps of 50ms until 650ms after the R-wave. Repositioning uncertainty was defined as the diameter of the smallest circle encompassing the points to be compared at the same time after the R-wave. Student's t-tests with a false discovery rate (FDR, q=0.1) correction for multiple comparison were applied to see whether coronary repositioning and velocity vary statistically during cardiac cycle. Bland-Altman plots and linear regression were used to assess intra- and inter-observer agreement. Results: The analysis of left coronary artery beat-to-beat repositioning uncertainty shows a tendency to have better repositioning in mid systole (less than 0.84±0.58mm) and mid diastole (less than 0.89±0.6mm) than in the rest of the cardiac cycle (highest value at 50ms=1.35±0.64mm). According to Student's t-tests with FDR correction for multiple comparison (q=0.1), two intervals, in mid systole (150-200ms) and mid diastole (550-600ms), provide statistically better repositioning in comparison with the early systole and the early diastole. Coronary velocity analysis reveals that left coronary artery moves more slowly in end systole (14.35±11.35mm/s at 225ms) and mid diastole (11.78±11.62mm/s at 625ms) than in the rest of the cardiac cycle (highest value at 25ms: 55.96±22.34mm/s). This was confirmed by Student's t-tests with FDR correction for multiple comparison (q=0.1, FDR-corrected p-value=0.054): coronary velocity values at 225, 575 and 625ms are not much different between them but they are statistically inferior to all others. Bland-Altman plots and linear regression show that intra-observer agreement (y=0.97x+0.02 with R²=0.93 at 150ms) is better than inter-observer (y=0.8x+0.11 with R²=0.67 at 150ms). Discussion: The present study has demonstrated that there are two time intervals in the cardiac cycle, one in mid systole and one in mid diastole, where left coronary artery repositioning uncertainty reaches points of local minima. It has also been calculated that the velocity is the lowest in end systole and mid diastole. Since systole is less influenced by heart rate variability than diastole, it was finally proposed to test an acquisition window between 150 and 200ms after the R-wave.
Resumo:
Introduction: Accurate registration of the relative timing between the occurrence of sensory events on a sub-second time scale is crucial for both sensory-motor and cognitive functions (Mauk and Buonomano, 2004; Habib, 2000). Support for this assumption comes notably from evidence that temporal processing impairments are implicated in a range of neurological and psychiatric conditions (e.g. Buhusi & Meck, 2005). For instance, deficits in fast auditory temporal integration have been regularly put forward as resulting in phonologic discrimination impairments at the basis of speech comprehension deficits characterizing e.g. dyslexia (Habib, 2000). At least two aspects of the brain mechanisms of temporal order judgment remain unknown. First, it is unknown when during the course of stimulus processing a temporal ,,stamp‟ is established to guide TOJ perception. Second, the extent of interplay between the cerebral hemispheres in engendering accurate TOJ performance is unresolved Methods: We investigated the spatiotemporal brain dynamics of auditory temporal order judgment (aTOJ) using electrical neuroimaging analyses of auditory evoked potentials (AEPs) recorded while participants completed a near-threshold task requiring spatial discrimination of left-right and right-left sound sequences. Results: AEPs to sound pairs modulated topographically as a function of aTOJ accuracy over the 39-77ms post-stimulus period, indicating the engagement of distinct configurations of brain networks during early auditory processing stages. Source estimations revealed that accurate and inaccurate performance were linked to bilateral posterior sylvian regions activity (PSR). However, activity within left, but not right, PSR predicted behavioral performance suggesting that left PSR activity during early encoding phases of pairs of auditory spatial stimuli appears critical for the perception of their order of occurrence. Correlation analyses of source estimations further revealed that activity between left and right PSR was significantly correlated in the inaccurate but not accurate condition, indicating that aTOJ accuracy depends on the functional de-coupling between homotopic PSR areas. Conclusions: These results support a model of temporal order processing wherein behaviorally relevant temporal information - i.e. a temporal 'stamp'- is extracted within the early stages of cortical processes within left PSR but critically modulated by inputs from right PSR. We discuss our results with regard to current models of temporal of temporal order processing, namely gating and latency mechanisms.
Resumo:
Astrocytes have recently become a major center of interest in neurochemistry with the discoveries on their major role in brain energy metabolism. An interesting way to probe this glial contribution is given by in vivo (13) C NMR spectroscopy coupled with the infusion labeled glial-specific substrate, such as acetate. In this study, we infused alpha-chloralose anesthetized rats with [2-(13) C]acetate and followed the dynamics of the fractional enrichment (FE) in the positions C4 and C3 of glutamate and glutamine with high sensitivity, using (1) H-[(13) C] magnetic resonance spectroscopy (MRS) at 14.1T. Applying a two-compartment mathematical model to the measured time courses yielded a glial tricarboxylic acid (TCA) cycle rate (Vg ) of 0.27 ± 0.02 μmol/g/min and a glutamatergic neurotransmission rate (VNT ) of 0.15 ± 0.01 μmol/g/min. Glial oxidative ATP metabolism thus accounts for 38% of total oxidative metabolism measured by NMR. Pyruvate carboxylase (VPC ) was 0.09 ± 0.01 μmol/g/min, corresponding to 37% of the glial glutamine synthesis rate. The glial and neuronal transmitochondrial fluxes (Vx (g) and Vx (n) ) were of the same order of magnitude as the respective TCA cycle fluxes. In addition, we estimated a glial glutamate pool size of 0.6 ± 0.1 μmol/g. The effect of spectral data quality on the fluxes estimates was analyzed by Monte Carlo simulations. In this (13) C-acetate labeling study, we propose a refined two-compartment analysis of brain energy metabolism based on (13) C turnover curves of acetate, glutamate and glutamine measured with state of the art in vivo dynamic MRS at high magnetic field in rats, enabling a deeper understanding of the specific role of glial cells in brain oxidative metabolism. In addition, the robustness of the metabolic fluxes determination relative to MRS data quality was carefully studied.
The Mixture Transition Distribution Model for High-Order Markov Chains and Non-Gaussian Time Series.
Resumo:
Catalase is an important virulence factor for survival in macrophages and other phagocytic cells. In Chlamydiaceae, no catalase had been described so far. With the sequencing and annotation of the full genomes of Chlamydia-related bacteria, the presence of different catalase-encoding genes has been documented. However, their distribution in the Chlamydiales order and the functionality of these catalases remain unknown. Phylogeny of chlamydial catalases was inferred using MrBayes, maximum likelihood, and maximum parsimony algorithms, allowing the description of three clade 3 and two clade 2 catalases. Only monofunctional catalases were found (no catalase-peroxidase or Mn-catalase). All presented a conserved catalytic domain and tertiary structure. Enzymatic activity of cloned chlamydial catalases was assessed by measuring hydrogen peroxide degradation. The catalases are enzymatically active with different efficiencies. The catalase of Parachlamydia acanthamoebae is the least efficient of all (its catalytic activity was 2 logs lower than that of Pseudomonas aeruginosa). Based on the phylogenetic analysis, we hypothesize that an ancestral class 2 catalase probably was present in the common ancestor of all current Chlamydiales but was retained only in Criblamydia sequanensis and Neochlamydia hartmannellae. The catalases of class 3, present in Estrella lausannensis and Parachlamydia acanthamoebae, probably were acquired by lateral gene transfer from Rhizobiales, whereas for Waddlia chondrophila they likely originated from Legionellales or Actinomycetales. The acquisition of catalases on several occasions in the Chlamydiales suggests the importance of this enzyme for the bacteria in their host environment.
Resumo:
According to the World Health Organization, 5.1% of blindnesses or visual impairments are related to corneal opacification. Cornea is a transparent tissue placed in front of the color of the eye. Its transparency is mandatory for vision. The ocular surface is a functional unit including the cornea and all the elements involved in maintaining its transparency i.e., the eyelids, the conjunctiva, the lymphoid tissue of the conjunctiva, the limbus, the lacrymal glands and the tear film. The destruction of the ocular surface is a disease caused by : traumatisms, infections, chronic inflammations, cancers, toxics, unknown causes or congenital abnormalities. The treatment of the ocular surface destruction requires a global strategy including all the elements that are involved in its physiology. The microenvironnement of the ocular surface must first be restored, i.e., the lids, the conjunctiva, the limbus and the structures that secrete the different layers of the tear film. In a second step, the transparency of the cornea can be reconstructed. A corneal graft performed in a healthy ocular surface microenvironnement will have a better survival rate. To achieve these goals, a thorough understanding of the renewal of the epitheliums and the role of the epithelial stem cells are mandatory.
Resumo:
Introduction: According to guidelines, patients with coronary artery disease (CAD) should undergo revascularization if myocardial ischemia is present. While coronary angiography (CXA) allows the morphological assessment of CAD, the fractional flow reserve (FFR) has proved to be a complementary invasive test to assess the functional significance of CAD, i.e. to detect ischemia. Perfusion Cardiac Magnetic Resonance (CMR) has turned out to be a robust non-invasive technique to assess myocardial ischemia. The objective: is to compare the cost-effectiveness ratio - defined as the costs per patient correctly diagnosed - of two algorithms used to diagnose hemodynamically significant CAD in relation to the pretest likelihood of CAD: 1) aCMRto assess ischemia before referring positive patients to CXA (CMR + CXA), 2) a CXA in all patients combined with a FFR test in patients with angiographically positive stenoses (CXA + FFR). Methods: The costs, evaluated from the health care system perspective in the Swiss, German, the United Kingdom (UK) and the United States (US) contexts, included public prices of the different tests considered as outpatient procedures, complications' costs and costs induced by diagnosis errors (false negative). The effectiveness criterion wasthe ability to accurately identify apatient with significantCAD.Test performancesused in the model were based on the clinical literature. Using a mathematical model, we compared the cost-effectiveness ratio for both algorithms for hypothetical patient cohorts with different pretest likelihood of CAD. Results: The cost-effectiveness ratio decreased hyperbolically with increasing pretest likelihood of CAD for both strategies. CMR + CXA and CXA + FFR were equally costeffective at a pretest likelihood of CAD of 62% in Switzerland, 67% in Germany, 83% in the UK and 84% in the US with costs of CHF 5'794, Euros 1'472, £ 2'685 and $ 2'126 per patient correctly diagnosed. Below these thresholds, CMR + CXA showed lower costs per patient correctly diagnosed than CXA + FFR. Implications for the health care system/professionals/patients/society These results facilitate decision making for the clinical use of new generations of imaging procedures to detect ischemia. They show to what extent the cost-effectiveness to diagnose CAD depends on the prevalence of the disease.
Resumo:
Quinupristin-dalfopristin (Q-D) synergizes with cefepime for the treatment of methicillin-resistant Staphylococcus aureus (MRSA). Here, we studied whether the synergism was restricted to MRSA and if it extended to non-beta-lactam cell wall inhibitors or to other inhibitors of protein synthesis. Three MRSA and two methicillin-susceptible S. aureus (MSSA) strains were tested, including an isogenic pair of mecA (-)/mecA (+) S. aureus Newman. The drug interactions were determined by fractional inhibitory concentration (FIC) indices and population analysis profiles. The antibacterial drugs that we used included beta-lactam (cefepime) and non-beta-lactam cell wall inhibitors (D-cycloserine, fosfomycin, vancomycin, teicoplanin), inhibitors of protein synthesis (Q-D, erythromycin, chloramphenicol, tetracycline, linezolid, fusidic acid), and polynucleotide inhibitors (cotrimoxazole, ciprofloxacin). The addition of each protein inhibitor to cefepime was synergistic (FIC ≤ 0.5) or additive (FIC > 0.5 but < 1) against MRSA, but mostly indifferent against MSSA (FIC ≥ 1 but ≤ 4). This segregation was not observed after adding cotrimoxazole or ciprofloxacin to cefepime. Population analysis profiles were performed on plates in the presence of increasing concentrations of the cell wall inhibitors plus 0.25 × minimum inhibitory concentration (MIC) of Q-D. Cefepime combined with Q-D was synergistic against MRSA, but D-cycloserine and glycopeptides were not. Thus, the synergism was specific to beta-lactam antibiotics. Moreover, the synergism was not lost against fem mutants, indicating that it acted at another level. The restriction of the beneficial effect to MRSA suggests that the functionality of penicillin-binding protein 2A (PBP2A) was affected, either directly or indirectly. Further studies are necessary in order to provide a mechanism for this positive interaction.
Resumo:
A new radiolarian order - Archaeospicularia - is proposed for some Lower Paleozoic radiolarians previously considered to belong to Spumellaria and to Collodaria. It is characterized by a globular shell made of several spicules which can be free, interlocked, or fused to formed a latticed wall. The present paper gives the definition of this order and proposes a first classification. It is supposed that the Archaeospicularia represents the oldest radiolarian group and that in the Lower Paleozoic it gave rise to the orders Entactinaria, Albaillellaria, and probably Spumellaria by the reduction of the number of initial spicules. The origin of this order and its relationships with other groups of organisms with siliceous skeletons are also briefly discussed. (C) 2000 Academie des sciences / Editions scientifiques et medicales Elsevier SAS.
Resumo:
To enhance the clinical value of coronary magnetic resonance angiography (MRA), high-relaxivity contrast agents have recently been used at 3T. Here we examine a uniform bilateral shadowing artifact observed along the coronary arteries in MRA images collected using such a contrast agent. Simulations were performed to characterize this artifact, including its origin, to determine how best to mitigate this effect, and to optimize a data acquisition/injection scheme. An intraluminal contrast agent concentration model was used to simulate various acquisition strategies with two profile orders for a slow-infusion of a high-relaxivity contrast agent. Filtering effects from temporally variable weighting in k-space are prominent when a centric, radial (CR) profile order is applied during contrast infusion, resulting in decreased signal enhancement and underestimation of vessel width, while both pre- and postinfusion steady-state acquisitions result in overestimation of the vessel width. Acquisition during the brief postinfusion steady-state produces the greatest signal enhancement and minimizes k-space filtering artifacts.
Higher-order expansions for compound distributions and ruin probabilities with subexponential claims