44 resultados para Fluorodeoxyglucose


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: The aim of the present report is to describe abnormal (18)F-fluorodeoxyglucose (FDG) accumulation patterns in the pleura and lung parenchyma in a group of lung cancer patients in whom lung infarction was present at the time of positron emission tomography (PET). METHODS: Between November 2002 and December 2003, a total of 145 patients (102 males, 43 females; age range 38-85 years) were subjected to whole-body FDG PET for initial staging (n=117) or restaging (n=11) of lung cancer or for evaluation of solitary pulmonary nodules (n=17). Of these patients, 24 displayed abnormal FDG accumulation in the lung parenchyma that was not consistent with the primary lesion under investigation (ipsilateral n=12, contralateral n=9 or bilateral n=3). Without correlative imaging, this additional FDG uptake would have been considered indeterminate in differential diagnosis. RESULTS: Of the 24 patients who were identified as having such lesions, six harboured secondary tumour nodules diagnosed as metastases, while in three the diagnosis of a synchronous second primary lung tumour was established. Additionally, nine patients were identified as having post-stenotic pneumonia and/or atelectasis (n=6) or granulomatous lung disease (n=3). In the remaining six (4% of all patients), a diagnosis of recent pulmonary embolism that topographically matched the additional FDG accumulation (SUV(max) range 1.4-8.6, mean 3.9) was made. Four of these six patients were known to have pulmonary embolism, and hence false positive interpretation was avoided by correlating the PET findings with those of the pre-existing diagnostic work-up. The remaining two patients were harbouring small occult infarctions that mimicked satellite nodules in the lung periphery. Based on histopathological results, the abnormal FDG accumulation in these two patients was attributed to the inflammatory reaction and tissue repair associated with the pathological cascade of pulmonary embolism. CONCLUSION: In patients with pulmonary malignancies, synchronous lung infarction may induce pathological FDG accumulation that can mimic active tumour manifestations. Identifying this potential pitfall may allow avoidance of false positive FDG PET interpretation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Diffusion-weighted magnetic resonance imaging (MRI) is increasingly being used for assessing the treatment succes in oncology, but the real clinical value needs to evaluated by comparison with other, already established, metabolic imaging techniques. PURPOSE: To prospectively evaluate the clinical potential of diffusion-weighted MRI with apparent diffusion coefficient (ADC) mapping for gastrointestinal stromal tumor (GIST) response to targeted therapy compared with 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). MATERIAL AND METHODS: Eight patients (mean age, 56 ± 11 years) known to have metastatic GIST underwent 18F-FDG PET/CT and MRI (T1Gd, DWI [b = 50,300,600], ADC mapping) simultaneously, before and after change in targeted therapy. MR and PET/CT examinations were first analyzed blindly. Second, PET/CT images were co-registered with T1Gd-MR images for lesion detection. Only 18F-FDG avid lesions were considered. Maximum standardized uptake value (SUVmax) and the corresponding minimum ADCmin were measured for the six largest lesions per patient, if any, on baseline and follow-up examinations. The relationship between changes in SUVmax and ADCmin was analyzed (Spearman's correlation). RESULTS: Twenty-four metastases (12 hepatic, 12 extra-hepatic) were compared on PET/CT and MR images. SUVmax decreased from 7.7 ± 8.1 g/mL to 5.5 ± 5.4 g/mL (P = 0.20), while ADCmin increased from 1.2 ± 0.3 × 10(-3)mm(2)/s to 1.5 ± 0.3 × 10(-3)mm(2)/s (P = 0.0002). There was a significant association between changes in SUVmax and ADCmin (rho = - 0.62, P = 0.0014), but not between changes in lesions size (P = 0.40). CONCLUSION: Changes in ADCmin correlated with the response of 18F-FDG avid GIST to targeted therapy. Thus, diffusion-weighted MRI may represent a radiation-free alternative for follow-up treatment for metastatic GIST patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RATIONALE AND OBJECTIVES: To systematically review and meta-analyze published data about the diagnostic accuracy of fluorine-18-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) and PET/computed tomography (CT) in the differential diagnosis between malignant and benign pleural lesions. METHODS AND MATERIALS: A comprehensive literature search of studies published through June 2013 regarding the diagnostic performance of (18)F-FDG-PET and PET/CT in the differential diagnosis of pleural lesions was carried out. All retrieved studies were reviewed and qualitatively analyzed. Pooled sensitivity, specificity, positive and negative likelihood ratio (LR+ and LR-) and diagnostic odds ratio (DOR) of (18)F-FDG-PET or PET/CT in the differential diagnosis of pleural lesions on a per-patient-based analysis were calculated. The area under the summary receiver operating characteristic curve (AUC) was calculated to measure the accuracy of these methods. Subanalyses considering device used (PET or PET/CT) were performed. RESULTS: Sixteen studies including 745 patients were included in the systematic review. The meta-analysis of 11 selected studies provided the following results: sensitivity 95% (95% confidence interval [95%CI]: 92-97%), specificity 82% (95%CI: 76-88%), LR+ 5.3 (95%CI: 2.4-11.8), LR- 0.09 (95%CI: 0.05-0.14), DOR 74 (95%CI: 34-161). The AUC was 0.95. No significant improvement of the diagnostic accuracy considering PET/CT studies only was found. CONCLUSIONS: (18)F-FDG-PET and PET/CT demonstrated to be accurate diagnostic imaging methods in the differential diagnosis between malignant and benign pleural lesions; nevertheless, possible sources of false-negative and false-positive results should be kept in mind.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diagnosis of focal status epilepticus (SE) can be challenging, particularly when clinical manifestations leave doubts about its nature, and electroencephalography (EEG) is not conclusive. This work addresses the utility of ictal (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) in focal SE, which was performed in eight patients in whom SE was finally diagnosed. Clinical, MRI and EEG data were reviewed. (18)F-FDG-PET proved useful: (1) to establish the diagnosis of focal SE, when clinical elements were equivocal or the EEG did not show clear-cut epileptiform abnormalities; (2) to delineate the epileptogenic area in view of possible resective surgery; and (3) when clinical features, MRI and EEG were incongruent regarding the origin of SE. We suggest that ictal (18)F-FDG-PET may represent a valuable diagnostic tool in selected patients with focal SE or frequent focal seizures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Signals detected with functional brain imaging techniques are based on the coupling of neuronal activity with energy metabolism. Techniques such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) allow the visualization of brain areas that are activated by a variety of sensory, motor or cognitive tasks. Despite the technological sophistication of these brain imaging techniques, the precise mechanisms and cell types involved in coupling and in generating metabolic signals are still debated. Recent experimental data on the cellular and molecular mechanisms that underlie the fluorodeoxyglucose (FDG) - based PET imaging point to a critical role of a particular brain cell type, the astrocytes, in coupling neuronal activity to glucose utilization. Indeed, astrocytes possess receptors and re-uptake sites for a variety of neurotransmitters, including glutamate, the predominant excitatory neurotransmitter in the brain, In addition, astrocytic end-feet, which surround capillaries, are enriched in the specific glucose transporter GLUT-1. These features allow astrocytes to "sense" synaptic activity and to couple it with energy metabolism. In vivo and in vitro data support the following functional model: in response to glutamate released by active neurons, glucose is predominantly taken up by astrocytic end-feet; glucose is then metabolized to lactate which provides a preferred energy substrate for neurons. These data support the notion that astrocytes markedly contribute to the FDG-PET signal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our aim was to evaluate the role of forced diuresis in improving the diagnostic accuracy of abdominopelvic (18)F-FDG PET. METHODS: Thirty-two patients were enrolled. Besides the presence of known intravesical tumors or undefined renal lesions on the initial PET scan, the inclusion criterion was the appearance of indeterminate or equivocal (18)F-FDG foci that extended along the course of the urinary tract and could not confidently be separated from urinary activity. For each patient, a second abdominopelvic PET study was performed after intravenous injection of 0.5 mg of furosemide per kilogram of body weight (maximum, 40 mg) coupled with parenteral infusion of physiologic saline. RESULTS: Forced diuresis coupled with parenteral hydration eliminated any significant (18)F-FDG activity from the lower urinary tract in 31 (97%) of 32 patients after the bladder had been voided 3 successive times. Twelve intravesical lesions were visualized with outstanding clarity, whereas radiologic suspicion of locally recurrent bladder tumors was ruled out in 3 patients. Among 14 indeterminate or equivocal extravesical foci, 7 were deemed of no clinical value because they disappeared after furosemide challenge, whereas 7 persisting foci were proven to be true-positive PET findings. The performance of (18)F-FDG PET in characterizing 3 renal-space-occupying lesions could not be improved by our protocol. CONCLUSION: Furosemide challenge has the potential to noninvasively resolve the inherent (18)F-FDG contrast handicap in the lower urinary tract.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Positron emission tomography with [18F] fluorodeoxyglucose (FDG-PET) plays a well-established role in assisting early detection of frontotemporal lobar degeneration (FTLD). Here, we examined the impact of intensity normalization to different reference areas on accuracy of FDG-PET to discriminate between patients with mild FTLD and healthy elderly subjects. FDG-PET was conducted at two centers using different acquisition protocols: 41 FTLD patients and 42 controls were studied at center 1, 11 FTLD patients and 13 controls were studied at center 2. All PET images were intensity normalized to the cerebellum, primary sensorimotor cortex (SMC), cerebral global mean (CGM), and a reference cluster with most preserved FDG uptake in the aforementioned patients group of center 1. Metabolic deficits in the patient group at center 1 appeared 1.5, 3.6, and 4.6 times greater in spatial extent, when tracer uptake was normalized to the reference cluster rather than to the cerebellum, SMC, and CGM, respectively. Logistic regression analyses based on normalized values from FTLD-typical regions showed that at center 1, cerebellar, SMC, CGM, and cluster normalizations differentiated patients from controls with accuracies of 86%, 76%, 75% and 90%, respectively. A similar order of effects was found at center 2. Cluster normalization leads to a significant increase of statistical power in detecting early FTLD-associated metabolic deficits. The established FTLD-specific cluster can be used to improve detection of FTLD on a single case basis at independent centers - a decisive step towards early diagnosis and prediction of FTLD syndromes enabling specific therapies in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Posttransplant lymphoproliferative disease (PTLD) is, aside skin cancer, the most common malignancy occurring after solid organ transplant in adults. Fluorodeoxyglucose (FDG) positron emission tomography (PET) has proved useful in the management of lymphomas. METHODS: We report our experience with the use of FDG-PET inline with computed tomography (CT) scanning in the management of four transplant recipients with histologically confirmed PTLD, including three monomorphic PTLDs and one polymorphic PTLD. RESULTS: FDG-PET/CT scan at diagnosis showed increased FDG uptake in all examined PTLD lesions, and the disease was upstaged on the basis of FDG-PET/CT scan results over conventional CT scanning in one patient. At the end of treatment, PET/CT scans no longer demonstrated FDG uptake in the original PTLD lesions in all patients. Complete remission of disease persisted for at least 1 year after diagnosis in all. CONCLUSIONS: Our results strongly support that FDG-PET scanning is highly specific for diagnosis and follow-up of PTLD. The clinical relevance of including FDG-PET/CT scanning in the management of PTLD should be evaluated in a larger prospective cohort study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The activity of radiopharmaceuticals in nuclear medicine is measured before patient injection with radionuclide calibrators. In Switzerland, the general requirements for quality controls are defined in a federal ordinance and a directive of the Federal Office of Metrology (METAS) which require each instrument to be verified. A set of three gamma sources (Co-57, Cs-137 and Co-60) is used to verify the response of radionuclide calibrators in the gamma energy range of their use. A beta source, a mixture of (90)Sr and (90)Y in secular equilibrium, is used as well. Manufacturers are responsible for the calibration factors. The main goal of the study was to monitor the validity of the calibration factors by using two sources: a (90)Sr/(90)Y source and a (18)F source. The three types of commercial radionuclide calibrators tested do not have a calibration factor for the mixture but only for (90)Y. Activity measurements of a (90)Sr/(90)Y source with the (90)Y calibration factor are performed in order to correct for the extra-contribution of (90)Sr. The value of the correction factor was found to be 1.113 whereas Monte Carlo simulations of the radionuclide calibrators estimate the correction factor to be 1.117. Measurements with (18)F sources in a specific geometry are also performed. Since this radionuclide is widely used in Swiss hospitals equipped with PET and PET-CT, the metrology of the (18)F is very important. The (18)F response normalized to the (137)Cs response shows that the difference with a reference value does not exceed 3% for the three types of radionuclide calibrators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: The aim of the study was to determine whether glucose uptake in viable myocardium of ischemic cardiomyopathy patients depends on rest myocardial blood flow (MBF) and the residual myocardial flow reserve (MFR). METHODS: Thirty-six patients with ischemic cardiomyopathy (left ventricular ejection fraction 25 ± 10 %) were studied with N-ammonia and F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Twenty age-matched normals served as controls. Regional MBF was determined at rest and during dipyridamole hyperemia and regional FDG extraction was estimated from regional FDG to N-ammonia activity ratios. RESULTS: Rest MBF was reduced in viable (0.42 ± 0.18 ml/min per g) and nonviable regions (0.32 ± 0.09 ml/min per g) relative to remote regions (0.68 ± 0.23 ml/min per g, p < 0.001) and to normals (0.63 ± 0.13 ml/min per g). Dipyridamole raised MBFs in controls, remote, viable, and nonviable regions. MBFs at rest (p < 0.05) and stress (p < 0.05) in viable regions were significantly higher than that in nonviable regions, while MFRs did not differ significantly (p > 0.05). Compared to MFR in remote myocardium, MFRs in viable regions were similar (1.39 ± 0.56 vs 1.70 ± 0.45, p > 0.05) but were significantly lower in nonviable regions (1.23 ± 0.43, p < 0.001). Moreover, the FDG and thus glucose extraction was higher in viable than in remote (1.40 ± 0.14 vs 0.90 ± 0.20, p < 0.001) and in nonviable regions (1.13 ± 0.21, p < 0.001). The extraction of FDG in viable regions was independent of rest MBF but correlated inversely with MFRs (r =-0.424, p < 0.05). No correlation between the FDG extraction and MFR was observed in nonviable regions. CONCLUSION: As in the animal model, decreasing MFRs in viable myocardium are associated with increasing glucose extraction that likely reflects a metabolic adaptation of remodeling hibernating myocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To quantify the relationship between bone marrow (BM) response to radiation and radiation dose by using (18)F-labeled fluorodeoxyglucose positron emission tomography [(18)F]FDG-PET standard uptake values (SUV) and to correlate these findings with hematological toxicity (HT) in cervical cancer (CC) patients treated with chemoradiation therapy (CRT). METHODS AND MATERIALS: Seventeen women with a diagnosis of CC were treated with standard doses of CRT. All patients underwent pre- and post-therapy [(18)F]FDG-PET/computed tomography (CT). Hemograms were obtained before and during treatment and 3 months after treatment and at last follow-up. Pelvic bone was autosegmented as total bone marrow (BMTOT). Active bone marrow (BMACT) was contoured based on SUV greater than the mean SUV of BMTOT. The volumes (V) of each region receiving 10, 20, 30, and 40 Gy (V10, V20, V30, and V40, respectively) were calculated. Metabolic volume histograms and voxel SUV map response graphs were created. Relative changes in SUV before and after therapy were calculated by separating SUV voxels into radiation therapy dose ranges of 5 Gy. The relationships among SUV decrease, radiation dose, and HT were investigated using multiple regression models. RESULTS: Mean relative pre-post-therapy SUV reductions in BMTOT and BMACT were 27% and 38%, respectively. BMACT volume was significantly reduced after treatment (from 651.5 to 231.6 cm(3), respectively; P<.0001). BMACT V30 was significantly correlated with a reduction in BMACT SUV (R(2), 0.14; P<.001). The reduction in BMACT SUV significantly correlated with reduction in white blood cells (WBCs) at 3 months post-treatment (R(2), 0.27; P=.04) and at last follow-up (R(2), 0.25; P=.04). Different dosimetric parameters of BMTOT and BMACT correlated with long-term hematological outcome. CONCLUSIONS: The volumes of BMTOT and BMACT that are exposed to even relatively low doses of radiation are associated with a decrease in WBC counts following CRT. The loss in proliferative BM SUV uptake translates into low WBC nadirs after treatment. These results suggest the potential of intensity modulated radiation therapy to spare BMTOT to reduce long-term hematological toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the current limited availability of organs for transplantation, it is important to consider marginal donor candidates, including survivors of potentially curable malignancies such as lymphoma. The absence of refractory/recurrent residual disease at the time of brain death can be difficult to establish. Therefore, it is critical to have objective data to decide whether to proceed or not with organ procurement and transplantation. We report a unique situation in which (18)F-fluorodeoxyglucose positron emission tomography (PET) was used to rule out Hodgkin's lymphoma recurrence in a 33-year-old, heart-beating, brain-dead, potential donor with a past history of Hodgkin's disease and a persistent mediastinal mass. PET showed no significant uptake in the mass, allowing organ donation and transplantation to occur. We present a new means of evaluating potential brain-dead donors with a past history of some lymphoma, whereby PET may help transplant physicians by optimizing donation safety while rationalizing the inclusion of marginal donors.