277 resultados para Fluid pressure
Pulse pressure variation-guided fluid therapy after cardiac surgery: A pilot before-and-after trial.
Resumo:
PURPOSE: The aim of this study is to study the feasibility, safety, and physiological effects of pulse pressure variation (PPV)-guided fluid therapy in patients after cardiac surgery. MATERIALS AND METHODS: We conducted a pilot prospective before-and-after study during mandatory ventilation after cardiac surgery in a tertiary intensive care unit. We introduced a protocol to deliver a fluid bolus for a PPV ≥13% for at least >10 minutes during the intervention period. RESULTS: We studied 45 control patients and 53 intervention patients. During the intervention period, clinicians administered a fluid bolus on 79% of the defined PPV trigger episodes. Median total fluid intake was similar between 2 groups during mandatory ventilation (1297 mL [interquartile range 549-1968] vs 1481 mL [807-2563]; P = .17) and the first 24 hours (3046 mL [interquartile range 2317-3982] vs 3017 mL [2192-4028]; P = .73). After adjusting for several baseline factors, PPV-guided fluid management significantly increased fluid intake during mandatory ventilation (P = .004) but not during the first 24 hours (P = .47). Pulse pressure variation-guided fluid therapy, however, did not significantly affect hemodynamic, renal, and metabolic variables. No serious adverse events were noted. CONCLUSIONS: Pulse pressure variation-guided fluid management was feasible and safe during mandatory ventilation after cardiac surgery. However, its advantages may be clinically small.
Resumo:
The Smart canula concept allows for collapsed cannula insertion, and self-expansion within a vein of the body. (A) Computational fluid dynamics, and (B) bovine experiments (76+/-3.8 kg) were performed for comparative analyses, prior to (C) the first clinical application. For an 18F access, a given flow of 4 l/min (A) resulted in a pressure drop of 49 mmHg for smart cannula versus 140 mmHg for control. The corresponding Reynolds numbers are 680 versus 1170, respectively. (B) For an access of 28F, the maximal flow for smart cannula was 5.8+/-0.5 l/min versus 4.0+/-0.1 l/min for standard (P<0.0001), for 24F 5.5+/-0.6 l/min versus 3.2+/-0.4 l/min (P<0.0001), and for 20F 4.1+/-0.3 l/min versus 1.6+/-0.3 l/min (P<0.0001). The flow obtained with the smart cannula was 270+/-45% (20F), 172+/-26% (24F), and 134+/-13% (28F) of standard (one-way ANOVA, P=0.014). (C) First clinical application (1.42 m2) with a smart cannula showed 3.55 l/min (100% predicted) without additional fluids. All three assessment steps confirm the superior performance of the smart cannula design.
Resumo:
The radicality of wound debridement is an important feature of the surgical treatment of pressure sores. Several methods such as injection of methylene blue or hydrogen peroxide have been proposed to facilitate and optimise the surgical debridement technique, but none of them proved to be sufficient. We present an innovative modification of the pseudo-tumour technique consisting in the injection of fluid silicone. Vulcanisation of the silicone leads to pressure-sore moulding, permitting a more radical and sterile excision. In a series of 10 paraplegic patients presenting with ischial pressure sores, silicone moulding was used to facilitate debridement. Radical en bloc debridement was achieved in all patients. After a minimal follow-up of 2 years, no complications and recurrences occurred. A three-dimensional (3D) analysis of the silicone prints objectified the pyramidal shape of ischial pressure sores. Our study showed that complete resection without capsular lesion can be easily achieved. Further, it allows the surgeon to analyse the shape and size of the resected defect, which might be helpful to select the appropriate defect coverage technique.
Resumo:
Hypertension is a serious medical problem affecting millions of people worldwide. A key protein regulating blood pressure is the Epithelial Na(+) Channel (ENaC). In accord, loss of function mutations in ENaC (PHA1) cause hypotension, whereas gain of function mutations (Liddle syndrome) result in hypertension. The region mutated in Liddle syndrome, called the PY motif (L/PPxY), serves as a binding site for the ubiquitin ligase Nedd4-2, a C2-WW-Hect E3 ubiquitin ligase. Nedd4-2 binds the ENaC-PY motif via it WW domains, ubiquitylates the channel and targets it for endocytosis, a process impaired in Liddle syndrome due to poor binding of the channel to Nedd4-2. This leads to accumulation of active channels at the cell surface and increased Na(+) (and fluid) absorption in the distal nephron, resulting in elevated blood volume and blood pressure. Compounds that destabilize cell surface ENaC, or enhance Nedd4-2 activity in the kidney, could potentially serve as drug targets for hypertension. In addition, recent discoveries of regulation of activation of ENaC by proteases such as furin, prostasin and elastase, which cleave the extracellular domain of this channel leading to it activation, as well as the identification of inhibitors that block the activity of these proteases, provide further avenues for drug targeting of ENaC and the control of blood pressure.
Resumo:
Generation of fluids during metamorphism can significantly influence the fluid overpressure, and thus the fluid flow in metamorphic terrains. There is currently a large focus on developing numerical reactive transport models, and with it follows the need for analytical solutions to ensure correct numerical implementation. In this study, we derive both analytical and numerical solutions to reaction-induced fluid overpressure, coupled to temperature and fluid flow out of the reacting front. All equations are derived from basic principles of conservation of mass, energy and momentum. We focus on contact metamorphism, where devolatilization reactions are particularly important owing to high thermal fluxes allowing large volumes of fluids to be rapidly generated. The analytical solutions reveal three key factors involved in the pressure build-up: (i) The efficiency of the devolatilizing reaction front (pressure build-up) relative to fluid flow (pressure relaxation), (ii) the reaction temperature relative to the available heat in the system and (iii) the feedback of overpressure on the reaction temperature as a function of the Clapeyron slope. Finally, we apply the model to two geological case scenarios. In the first case, we investigate the influence of fluid overpressure on the movement of the reaction front and show that it can slow down significantly and may even be terminated owing to increased effective reaction temperature. In the second case, the model is applied to constrain the conditions for fracturing and inferred breccia pipe formation in organic-rich shales owing to methane generation in the contact aureole.
Resumo:
No earlier study has investigated the microbiology of negative pressure wound therapy (NPWT) foam using a standardized manner. The purpose of this study is to investigate the bacterial load and microbiological dynamics in NPWT foam removed from chronic wounds (>3 months). To determine the bacterial load, a standardized size of the removed NPWT foam was sonicated. The resulting sonication fluid was cultured, and the colony-forming units (CFU) of each species were enumerated. Sixty-eight foams from 17 patients (mean age 63 years, 71% males) were investigated. In 65 (97%) foams, â0/00¥âeuro0/001 and in 37 (54%) â0/00¥2 bacterial types were found. The bacterial load remained high during NPWT treatment, ranging from 10(4) to 10(6) CFU/ml. In three patients (27%), additional type of bacteria was found in subsequent foam cultures. The mean bacterial countâeuro0/00±âeuro0/00standard deviation was higher in polyvinyl alcohol foam (6.1âeuro0/00±âeuro0/000.5 CFU/ml) than in polyurethane (5.5âeuro0/00±âeuro0/000.8 CFU/ml) (pâeuro0/00=âeuro0/000.02). The mean of log of sum of CFU/ml in foam from 125âeuro0/00mmHg (5.5âeuro0/00±âeuro0/000.8) was lower than in foam from 100âeuro0/00mmHg pressure (5.9âeuro0/00±âeuro0/000.5) (pâeuro0/00=âeuro0/000.01). Concluding, bacterial load remains high in NPWT foam, and routine changing does not reduce the load.
Resumo:
In this review, we discuss genetic evidence supporting Guyton's hypothesis stating that blood pressure control is critically depending on fluid handling by the kidney. The review is focused on the genetic dissection of sodium and potassium transport in the distal nephron and the collecting duct that are the most important sites for the control of sodium and potassium balance by aldosterone and angiotensin II. Thanks to the study of Mendelian forms of hypertension and their corresponding transgenic mouse models, three main classes of diuretic receptors (furosemide, thiazide, amiloride) and the main components of the aldosterone- and angiotensin-dependent signaling pathways were molecularly identified over the past 20years. This will allow to design rational strategies for the treatment of hypertension and for the development of the next generation of diuretics.
Resumo:
Relatively homogeneous oxygen isotope compositions of amphibole, clinopyroxene, and olivine separates (+5.2 to +5.7parts per thousand relative to VSMOW) and neodymium isotope compositions (epsilon(Nd(T)) = -0.9 to -1.8 for primary magmatic minerals and epsilon(Nd(T)) = -0.1 and -0.5 for mineral separates from late-stage pegmatites and hydrothermal veins) from the alkaline to agpaitic llimaussaq intrusion, South Greenland, indicate a closed system evolution of this igneous complex and support a mantle derivation of the magma. In contrast to the homogeneous oxygen and neodymium isotopic data, deltaD values for hand-picked amphibole separates vary between -92 and -232parts per thousand and are among the most deuterium-depleted values known from igneous amphiboles. The calculated fluid phase coexisting with these amphiboles has a homogeneous oxygen isotopic composition within the normal range of magmatic waters, but extremely heterogeneous and low D/H ratios, implying a decoupling of the oxygen- and hydrogen isotope systems. Of the several possibilities that can account for such unusually low deltaD values in amphiboles (e.g., late-stage hydrothermal exchange with meteoric water, extensive magmatic degassing, contamination with organic matter, and/or effects of Fe-content and pressure on amphibole-water fractionation) the most likely explanation for the range in deltaD values is that the amphiboles have been influenced by secondary interaction and reequilibration with D-depleted fluids obtained through late-magmatic oxidation of internally generated CH(4) and/or H(2). This interpretation is consistent with the known occurrence of abundant magmatic CH(4) in the Ilimaussaq rocks and with previous studies on the isotopic compositions of the rocks and fluids. Copyright (C) 2004 Elsevier Ltd.
Resumo:
OBJECTIVES: The reconstruction of the right ventricular outflow tract (RVOT) with valved conduits remains a challenge. The reoperation rate at 5 years can be as high as 25% and depends on age, type of conduit, conduit diameter and principal heart malformation. The aim of this study is to provide a bench model with computer fluid dynamics to analyse the haemodynamics of the RVOT, pulmonary artery, its bifurcation, and left and right pulmonary arteries that in the future may serve as a tool for analysis and prediction of outcome following RVOT reconstruction. METHODS: Pressure, flow and diameter at the RVOT, pulmonary artery, bifurcation of the pulmonary artery, and left and right pulmonary arteries were measured in five normal pigs with a mean weight of 24.6 ± 0.89 kg. Data obtained were used for a 3D computer fluid-dynamics simulation of flow conditions, focusing on the pressure, flow and shear stress profile of the pulmonary trunk to the level of the left and right pulmonary arteries. RESULTS: Three inlet steady flow profiles were obtained at 0.2, 0.29 and 0.36 m/s that correspond to the flow rates of 1.5, 2.0 and 2.5 l/min flow at the RVOT. The flow velocity profile was constant at the RVOT down to the bifurcation and decreased at the left and right pulmonary arteries. In all three inlet velocity profiles, low sheer stress and low-velocity areas were detected along the left wall of the pulmonary artery, at the pulmonary artery bifurcation and at the ostia of both pulmonary arteries. CONCLUSIONS: This computed fluid real-time model provides us with a realistic picture of fluid dynamics in the pulmonary tract area. Deep shear stress areas correspond to a turbulent flow profile that is a predictive factor for the development of vessel wall arteriosclerosis. We believe that this bench model may be a useful tool for further evaluation of RVOT pathology following surgical reconstructions.
Resumo:
The following main lithostratigraphic units have been distinguished in the Domes Area. The Kibaran basement complex composed of gneisses, migmatites with amphibolite bands and metagranites is exposed in dome structures; metamorphic features of Kibaran age have been almost completely obliterated by extensive Lufilian reactivation. The post-Kibaran cover sequence is subdivided into the Lower Roan Group consisting of well-preserved quartzites with high Mg content, talc-bearing, extremely foliated schists intercalated with pseudo-conglomerates of tectonic origin and the Upper Roan Group including dolomitic marbles with rare stromatolites, metapelites and a sequence of detrital metasediments, with local volcano-sedimentary components and interlayered banded ironstones. The sediments of the Lower Roan Group are interpreted as continental to lagoonal-evaporitic deposits partly converted into the talc-kyanite + garnet assemblage characteristic of ``white schists''. The dolomites and metapelites of the Upper Roan Group are attributed to a carbonate platform sequence progressively subsiding under terrigenous deposits, whilst the detrital metasediments and BIF may be interpreted as a basinal sequence, probably deposited on oceanic crust grading laterally into marbles. Metagabbros and metabasalts are considered as remnants of an ocean-floor-type crustal unit probably related to small basins. Alkaline stocks of Silurian age intruded the post-Kibaran cover. Significant ancestral tectonic discontinuities promoted the development of a nappe pile that underwent high-pressure metamorphism during the Lufilian orogeny and all lithostratigraphic units. Rb-Sr and K-Ar and U-Pb data indicate an age of 700 Ma for the highest grade metamorphism and 500 Ma for blocking of the K-Ar and Rb-Sr system in micas, corresponding to the time when the temperature dropped below 350-degrees-400-degrees-C and to an age of about 400 Ma for the emplacement of hypabyssal syenitic bodies. A first phase of crustal shortening by decoupling of basement and cover slices along shallow shear zones has been recognized. Fluid-rich tectonic slabs of cover sediments were thus able to transport fluids into the anhydrous metamorphic basement or mafic units. During the subsequent metamorphic re-equilibration stage of high pressure, pre-existing thrusts horizons were converted into recrystallized mylonites. Due to uplift, rocks were re-equilibrated into assemblages compatible with lower pressures and slightly lower temperatures. This stage occurs under a decompressional (nearly adiabatic) regime, with P(fluid) almost-equal-to P(lithostatic). It is accompanied by metasomatic development of minerals, activated by injection of hot fluids. New or reactivated shear zones and mylonitic belts were the preferred conduits of fluids. The most evident regional-scale effect of these processes is the intense metasomatic scapolitization of formerly plagioclase-rich lithologies. Uraninite mineralization can probably be assigned to the beginning of the decompressional stage. A third regional deformation phase characterized by open folds and local foliation is not accompanied by significant growth of new minerals. However, pitchblende mineralization can be ascribed to this phase as late-stage, short-range remobilization of previously existing deposits. Finally, shallow alkaline massifs were emplaced when the level of the Domes Area now exposed was already subjected to exchange with meteoric circuits, activated by residual geothermal gradients generally related to intrusions or rifting. Most of the superficial U-showings with U-oxidation products were probably generated during this relatively recent phase.
Resumo:
We perform direct numerical simulations of drainage by solving Navier- Stokes equations in the pore space and employing the Volume Of Fluid (VOF) method to track the evolution of the fluid-fluid interface. After demonstrating that the method is able to deal with large viscosity contrasts and to model the transition from stable flow to viscous fingering, we focus on the definition of macroscopic capillary pressure. When the fluids are at rest, the difference between inlet and outlet pressures and the difference between the intrinsic phase average pressure coincide with the capillary pressure. However, when the fluids are in motion these quantities are dominated by viscous forces. In this case, only a definition based on the variation of the interfacial energy provides an accurate measure of the macroscopic capillary pressure and allows separating the viscous from the capillary pressure components.
Resumo:
We have modeled numerically the seismic response of a poroelastic inclusion with properties applicable to an oil reservoir that interacts with an ambient wavefield. The model includes wave-induced fluid flow caused by pressure differences between mesoscopic-scale (i.e., in the order of centimeters to meters) heterogeneities. We used a viscoelastic approximation on the macroscopic scale to implement the attenuation and dispersion resulting from this mesoscopic-scale theory in numerical simulations of wave propagation on the kilometer scale. This upscaling method includes finite-element modeling of wave-induced fluid flow to determine effective seismic properties of the poroelastic media, such as attenuation of P- and S-waves. The fitted, equivalent, viscoelastic behavior is implemented in finite-difference wave propagation simulations. With this two-stage process, we model numerically the quasi-poroelastic wave-propagation on the kilometer scale and study the impact of fluid properties and fluid saturation on the modeled seismic amplitudes. In particular, we addressed the question of whether poroelastic effects within an oil reservoir may be a plausible explanation for low-frequency ambient wavefield modifications observed at oil fields in recent years. Our results indicate that ambient wavefield modification is expected to occur for oil reservoirs exhibiting high attenuation. Whether or not such modifications can be detected in surface recordings, however, will depend on acquisition design and noise mitigation processing as well as site-specific conditions, such as the geologic complexity of the subsurface, the nature of the ambient wavefield, and the amount of surface noise.
Resumo:
The Trepca Pb-Zn-Ag skarn deposit (29 Mt of ore at 3.45% Pb, 2.30% Zn, and 80 g/t Ag) is located in the Kopaonik block of the western Vardar zone, Kosovo. The mineralization, hosted by recrystallized limestone of Upper Triassic age, was structurally and lithologically controlled. Ore deposition is spatially and temporally related with the postcollisional magmatism of Oligocene age (23-26 Ma). The deposit was formed during two distinct mineralization stages: an early prograde closed-system and a later retrograde open-system stage. The prograde mineralization consisting mainly of pyroxenes (Hd(54-100)Jo(0-45)Di(0-45)) resulted from the interaction of magmatic fluids associated with Oligocene (23-26 Ma) postcollisional magmatism. Whereas there is no direct contact between magmatic rocks and the mineralization, the deposit is classified as a distal Pb-Zn-Ag skarn. Abundant pyroxene reflects low oxygen fugacity (<10(-31) bar) and anhydrous environment. Fluid inclusion data and mineral assemblage limit the prograde stage within a temperature range between 390 degrees and 475 degrees C. Formation pressure is estimated below 900 bars. Isotopic composition of aqueous fluid, inclusions hosted by hedenbergite (delta D = -108 to -130 parts per thousand; delta O-18 = 7.5-8.0 parts per thousand), Mn-enriched mineralogy and high REE content of the host carbonates at the contact with the skarn mineralization suggest that a magmatic fluid was modified during its infiltration through the country rocks. The retrograde mineral assemblage comprises ilvaite, magnetite, arsenopyrite, pyrrhotite, marcasite, pyrite, quartz, and various carbonates. Increases in oxygen and sulfur fugacities, as well as a hydrous character of mineralization, require an open-system model. The opening of the system is related to phreatomagmatic explosion and formation of the breccia. Arsenopyrite geothermometer limits the retrograde stage within the temperature range between 350 degrees and 380 degrees C and sulfur fugacity between 10(-8.8) and 10(-7.2) bars. The principal ore minerals, galena, sphalerite, pyrite, and minor chalcopyrite, were deposited from a moderately saline Ca-Na chloride fluid at around 350 degrees C. According to the isotopic composition of fluid inclusions hosted by sphalerite (delta D = -55 to -74 parts per thousand; delta O-18 = -9.6 to -13.6 parts per thousand), the fluid responsible for ore deposition was dominantly meteoric in origin. The delta S-31 values of the sulfides spanning between -5.5 and +10 parts per thousand point to a magmatic origin of sulfur. Ore deposition appears to have been largely contemporaneous with the retrograde stage of the skarn development. Postore stage accompanied the precipitation of significant amount of carbonates including the travertine deposits at the deposit surface. Mineralogical composition of travertine varies from calcite to siderite and all carbonates contain significant amounts of Mn. Decreased formation temperature and depletion in the REE content point to an influence of pH-neutralized cold ground water and dying magmatic system.