112 resultados para Fluid Dynamics -- Computer simulation
Resumo:
Graph theory has provided a key mathematical framework to analyse the architecture of human brain networks. This architecture embodies an inherently complex relationship between connection topology, the spatial arrangement of network elements, and the resulting network cost and functional performance. An exploration of these interacting factors and driving forces may reveal salient network features that are critically important for shaping and constraining the brain's topological organization and its evolvability. Several studies have pointed to an economic balance between network cost and network efficiency with networks organized in an 'economical' small-world favouring high communication efficiency at a low wiring cost. In this study, we define and explore a network morphospace in order to characterize different aspects of communication efficiency in human brain networks. Using a multi-objective evolutionary approach that approximates a Pareto-optimal set within the morphospace, we investigate the capacity of anatomical brain networks to evolve towards topologies that exhibit optimal information processing features while preserving network cost. This approach allows us to investigate network topologies that emerge under specific selection pressures, thus providing some insight into the selectional forces that may have shaped the network architecture of existing human brains.
Resumo:
BACKGROUND: The mechanism behind early graft failure after right ventricular outflow tract (RVOT) reconstruction is not fully understood. Our aim was to establish a three-dimensional computational fluid dynamics (CFD) model of RVOT to investigate the hemodynamic conditions that may trigger the development of intimal hyperplasia and arteriosclerosis. METHODS: Pressure, flow, and diameter at the RVOT, pulmonary artery (PA), bifurcation of the PA, and left and right PAs were measured in 10 normal pigs with a mean weight of 24.8 ± 0.78 kg. Data obtained from the experimental scenario were used for CFD simulation of pressure, flow, and shear stress profile from the RVOT to the left and right PAs. RESULTS: Using experimental data, a CFD model was obtained for 2.0 and 2.5-L/min pulsatile inflow profiles. In both velocity profiles, time and space averaged in the low-shear stress profile range from 0-6.0 Pa at the pulmonary trunk, its bifurcation, and at the openings of both PAs. These low-shear stress areas were accompanied to high-pressure regions 14.0-20.0 mm Hg (1866.2-2666 Pa). Flow analysis revealed a turbulent flow at the PA bifurcation and ostia of both PAs. CONCLUSIONS: Identified local low-shear stress, high pressure, and turbulent flow correspond to a well-defined trigger pattern for the development of intimal hyperplasia and arteriosclerosis. As such, this real-time three-dimensional CFD model may in the future serve as a tool for the planning of RVOT reconstruction, its analysis, and prediction of outcome.
Resumo:
It has been long recognized that highly polymorphic genetic markers can lead to underestimation of divergence between populations when migration is low. Microsatellite loci, which are characterized by extremely high mutation rates, are particularly likely to be affected. Here, we report genetic differentiation estimates in a contact zone between two chromosome races of the common shrew (Sorex araneus), based on 10 autosomal microsatellites, a newly developed Y-chromosome microsatellite, and mitochondrial DNA. These results are compared to previous data on proteins and karyotypes. Estimates of genetic differentiation based on F- and R-statistics are much lower for autosomal microsatellites than for all other genetic markers. We show by simulations that this discrepancy stems mainly from the high mutation rate of microsatellite markers for F-statistics and from deviations from a single-step mutation model for R-statistics. The sex-linked genetic markers show that all gene exchange between races is mediated by females. The absence of male-mediated gene flow most likely results from male hybrid sterility.
Resumo:
Metabolic problems lead to numerous failures during clinical trials, and much effort is now devoted in developing in silico models predicting metabolic stability and metabolites. Such models are well known for cytochromes P450 and some transferases, whereas little has been done to predict the hydrolytic activity of human hydrolases. The present study was undertaken to develop a computational approach able to predict the hydrolysis of novel esters by human carboxylesterase hCES1. The study involves both docking analyses of known substrates to develop predictive models, and molecular dynamics (MD) simulations to reveal the in situ behavior of substrates and products, with particular attention being paid to the influence of their ionization state. The results emphasize some crucial properties of the hCES1 catalytic cavity, confirming that as a trend with several exceptions, hCES1 prefers substrates with relatively smaller and somewhat polar alkyl/aryl groups and larger hydrophobic acyl moieties. The docking results underline the usefulness of the hydrophobic interaction score proposed here, which allows a robust prediction of hCES1 catalysis, while the MD simulations show the different behavior of substrates and products in the enzyme cavity, suggesting in particular that basic substrates interact with the enzyme in their unprotonated form.
Resumo:
MOTIVATION: In silico modeling of gene regulatory networks has gained some momentum recently due to increased interest in analyzing the dynamics of biological systems. This has been further facilitated by the increasing availability of experimental data on gene-gene, protein-protein and gene-protein interactions. The two dynamical properties that are often experimentally testable are perturbations and stable steady states. Although a lot of work has been done on the identification of steady states, not much work has been reported on in silico modeling of cellular differentiation processes. RESULTS: In this manuscript, we provide algorithms based on reduced ordered binary decision diagrams (ROBDDs) for Boolean modeling of gene regulatory networks. Algorithms for synchronous and asynchronous transition models have been proposed and their corresponding computational properties have been analyzed. These algorithms allow users to compute cyclic attractors of large networks that are currently not feasible using existing software. Hereby we provide a framework to analyze the effect of multiple gene perturbation protocols, and their effect on cell differentiation processes. These algorithms were validated on the T-helper model showing the correct steady state identification and Th1-Th2 cellular differentiation process. AVAILABILITY: The software binaries for Windows and Linux platforms can be downloaded from http://si2.epfl.ch/~garg/genysis.html.
Resumo:
BACKGROUND:Maternally transmitted symbionts have evolved a variety of ways to promote their spread through host populations. One strategy is to hamper the reproduction of uninfected females by a mechanism called cytoplasmic incompatibility (CI). CI occurs in crosses between infected males and uninfected females and leads to partial to near-complete infertility. CI-infections are under positive frequency-dependent selection and require genetic drift to overcome the range of low frequencies where they are counter-selected. Given the importance of drift, population sub-division would be expected to facilitate the spread of CI. Nevertheless, a previous model concluded that variance in infection between competing groups of breeding individuals impedes the spread of CI.RESULTS:In this paper we derive a model on the spread of CI-infections in populations composed of demes linked by restricted migration. Our model shows that population sub-division facilitates the invasion of CI. While host philopatry (low migration) favours the spread of infection, deme size has a non-monotonous effect, with CI-invasion being most likely at intermediate deme size. Individual-based simulations confirm these predictions and show that high levels of local drift speed up invasion but prevent high levels of prevalence across the entire population. Additional simulations with sex-specific migration rates further show that low migration rates of both sexes are required to facilitate the spread of CI.CONCLUSION:Our analyses show that population structure facilitates the invasion of CI-infections. Since some level of sub-division is likely to occur in most natural populations, our results help to explain the high incidence of CI-infections across species of arthropods. Furthermore, our work has important implications for the use of CI-systems in order to genetically modify natural populations of disease vectors.
Resumo:
Na,K-ATPase, the main active transport system for monovalent cations in animal cells, is responsible for maintaining Na(+) and K(+) gradients across the plasma membrane. During its transport cycle it binds three cytoplasmic Na(+) ions and releases them on the extracellular side of the membrane, and then binds two extracellular K(+) ions and releases them into the cytoplasm. The fourth, fifth, and sixth transmembrane helices of the alpha subunit of Na,K-ATPase are known to be involved in Na(+) and K(+) binding sites, but the gating mechanisms that control the access of these ions to their binding sites are not yet fully understood. We have focused on the second extracellular loop linking transmembrane segments 3 and 4 and attempted to determine its role in gating. We replaced 13 residues of this loop in the rat alpha1 subunit, from E314 to G326, by cysteine, and then studied the function of these mutants using electrophysiological techniques. We analyzed the results using a structural model obtained by homology with SERCA, and ab initio calculations for the second extracellular loop. Four mutants were markedly modified by the sulfhydryl reagent MTSET, and we investigated them in detail. The substituted cysteines were more readily accessible to MTSET in the E1 conformation for the Y315C, W317C, and I322C mutants. Mutations or derivatization of the substituted cysteines in the second extracellular loop resulted in major increases in the apparent affinity for extracellular K(+), and this was associated with a reduction in the maximum activity. The changes produced by the E314C mutation were reversed by MTSET treatment. In the W317C and I322C mutants, MTSET also induced a moderate shift of the E1/E2 equilibrium towards the E1(Na) conformation under Na/Na exchange conditions. These findings indicate that the second extracellular loop must be functionally linked to the gating mechanism that controls the access of K(+) to its binding site.
Resumo:
Le modèle développé à l'Institut universitaire de médecine sociale et préventive de Lausanne utilise un programme informatique pour simuler les mouvements d'entrées et de sorties des hôpitaux de soins généraux. Cette simulation se fonde sur les données récoltées de routine dans les hôpitaux; elle tient notamment compte de certaines variations journalières et saisonnières, du nombre d'entrées, ainsi que du "Case-Mix" de l'hôpital, c'est-à-dire de la répartition des cas selon les groupes cliniques et l'âge des patients.
Resumo:
We studied the noctule bat (Nyctalus noctula), in which the mitochondrial F(ST) is about 10 times that revealed by nuclear markers, to address two questions. We first verified whether random dispersal of one sex is compatible with highly contrasted mitochondrial and nuclear population structures. Using computer simulations, we then assessed the power of multilocus population differentiation tests when the expected population structure departs only slightly from panmixia. Using an island model with sex-specific demographic parameters, we found that random male dispersal is consistent with the population structure observed in the noctule. However, other parameter combinations are also compatible with the data. We computed the minimum sex bias in dispersal (at least 69% of the dispersing individuals are males), a result that would not be available if we had used more classical population genetic models. The power of multilocus population differentiation tests was unexpectedly high, the tests being significant in almost 100% of the replicates, although the observed population structure infered from nuclear markers was extremely low (F(ST) = 0.6%).
Resumo:
Site-directed mutagenesis and molecular dynamics simulations of the alpha 1B-adrenergic receptor (AR) were combined to explore the potential molecular changes correlated with the transition from R (inactive state) to R (active state). Using molecular dynamics analysis we compared the structural/dynamic features of constitutively active mutants with those of the wild type and of an inactive alpha 1B-AR to build a theoretical model which defines the essential features of R and R. The results of site-directed mutagenesis were in striking agreement with the predictions of the model supporting the following hypothesis. (i) The equilibrium between R and R depends on the equilibrium between the deprotonated and protonated forms, respectively, of D142 of the DRY motif. In fact, replacement of D142 with alanine confers high constitutive activity to the alpha 1B-AR. (ii) The shift of R143 of the DRY sequence out of a conserved 'polar pocket' formed by N63, D91, N344 and Y348 is a feature common to all the active structures, suggesting that the role of R143 is fundamental for mediating receptor activation. Disruption of these intramolecular interactions by replacing N63 with alanine constitutively activates the alpha 1B-AR. Our findings might provide interesting generalities about the activation process of G protein-coupled receptors.
Resumo:
Interspecific competition, life history traits, environmental heterogeneity and spatial structure as well as disturbance are known to impact the successful dispersal strategies in metacommunities. However, studies on the direction of impact of those factors on dispersal have yielded contradictory results and often considered only few competing dispersal strategies at the same time. We used a unifying modeling approach to contrast the combined effects of species traits (adult survival, specialization), environmental heterogeneity and structure (spatial autocorrelation, habitat availability) and disturbance on the selected, maintained and coexisting dispersal strategies in heterogeneous metacommunities. Using a negative exponential dispersal kernel, we allowed for variation of both species dispersal distance and dispersal rate. We showed that strong disturbance promotes species with high dispersal abilities, while low local adult survival and habitat availability select against them. Spatial autocorrelation favors species with higher dispersal ability when adult survival and disturbance rate are low, and selects against them in the opposite situation. Interestingly, several dispersal strategies coexist when disturbance and adult survival act in opposition, as for example when strong disturbance regime favors species with high dispersal abilities while low adult survival selects species with low dispersal. Our results unify apparently contradictory previous results and demonstrate that spatial structure, disturbance and adult survival determine the success and diversity of coexisting dispersal strategies in competing metacommunities.
Resumo:
Le modèle développé à l'Institut universitaire de médecine sociale et préventive de Lausanne utilise un programme informatique pour simuler les mouvements d'entrées et de sorties des hôpitaux de soins généraux. Cette simulation se fonde sur les données récoltées de routine dans les hôpitaux; elle tient notamment compte de certaines variations journalières et saisonnières, du nombre d'entrées, ainsi que du "Case-Mix" de l'hôpital, c'est-à-dire de la répartition des cas selon les groupes cliniques et l'âge des patients.
Resumo:
Introduction: Streptomycin, as other aminoglycosides, exhibits concentration-dependent bacterial killing but has a narrow therapeutic window. It is primarily eliminated unchanged by the kidneys. Data and dosing information to achieve a safe regimen in patients with chronic renal failure undergoing hemodialysis (HD) are scarce. Although main adverse reactions are related to prolonged, elevated serum concentrations, literature recommendation is to administer streptomycin after each HD. Patients (or Materials) and Methods: We report the case of a patient with end-stage renal failure, undergoing HD, who was successfully treated with streptomycin for gentamicin-resistant Enterococcus faecalis bacteremia with prosthetic arteriovenous fistula infection. Streptomycin was administered intravenously 7.5 mg/kg, 3 hours before each dialysis (3 times a week) during 6 weeks in combination with amoxicillin. Streptomycin plasma levels were monitored with repeated blood sampling before, after, and between HD sessions. A 2-compartment model was used to reconstruct the concentration time profile over days on and off HD. Results: Streptomycin trough plasma-concentration was 2.8 mg/L. It peaked to 21.4 mg/L 30 minutes after intravenous administration, decreased to 18.2 mg/L immediately before HD, and dropped to 4.5 mg/L at the end of a 4-hour HD session. Plasma level increased again to 5.7 mg/L 2 hours after the end of HD and was 2.8 mg/L 48 hours later, before the next administration and HD. The pharmacokinetics of streptomycin was best described with a 2-compartment model. The computer simulation fitted fairly well to the observed concentrations during or between HD sessions. Redistribution between the 2 compartments after the end of HD reproduced the rebound of plasma concentrations after HD. No significant toxicity was observed during treatment. The outcome of the infection was favorable, and no sign of relapse was observed after a follow-up of 3 months. Conclusion: Streptomycin administration of 7.5 mg/kg 3 hours before HD sessions in a patient with end-stage renal failure resulted in an effective and safe dosing regimen. Monitoring plasma levels along with pharmacokinetic simulation document the suitability of this dosing scheme, which should replace current dosage recommendations for streptomycin in HD.
Resumo:
We propose a novel compressed sensing technique to accelerate the magnetic resonance imaging (MRI) acquisition process. The method, coined spread spectrum MRI or simply s(2)MRI, consists of premodulating the signal of interest by a linear chirp before random k-space under-sampling, and then reconstructing the signal with nonlinear algorithms that promote sparsity. The effectiveness of the procedure is theoretically underpinned by the optimization of the coherence between the sparsity and sensing bases. The proposed technique is thoroughly studied by means of numerical simulations, as well as phantom and in vivo experiments on a 7T scanner. Our results suggest that s(2)MRI performs better than state-of-the-art variable density k-space under-sampling approaches.