18 resultados para Fenced grassland
Resumo:
Question Can we predict where forest regrowth caused by abandonment of agricultural activities is likely to occur? Can we assess how it may conflict with grassland diversity hotspots? Location Western Swiss Alps (4003210m a.s.l.). Methods We used statistical models to predict the location of land abandonment by farmers that is followed by forest regrowth in semi-natural grasslands of the Western Swiss Alps. Six modelling methods (GAM, GBM, GLM, RF, MDA, MARS) allowing binomial distribution were tested on two successive transitions occurring between three time periods. Models were calibrated using data on land-use change occurring between 1979 and 1992 as response, and environmental, accessibility and socio-economic variables as predictors, and these were validated for their capacity to predict the changes observed from 1992 to 2004. Projected probabilities of land-use change from an ensemble forecast of the six models were combined with a model of plant species richness based on a field inventory, allowing identification of critical grassland areas for the preservation of biodiversity. Results Models calibrated over the first land-use transition period predicted the second transition with reasonable accuracy. Forest regrowth occurs where cultivation costs are high and yield potential is low, i.e. on steeper slopes and at higher elevations. Overlaying species richness with land-use change predictions, we identified priority areas for the management and conservation of biodiversity at intermediate elevations. Conclusions Combining land-use change and biodiversity projections, we propose applied management measures for targeted/identified locations to limit the loss of biodiversity that could otherwise occur through loss of open habitats. The same approach could be applied to other types of land-use changes occurring in other ecosystems.
Resumo:
Aim: Modelling species at the assemblage level is required to make effective forecast of global change impacts on diversity and ecosystem functioning. Community predictions may be achieved using macroecological properties of communities (MEM), or by stacking of individual species distribution models (S-SDMs). To obtain more realistic predictions of species assemblages, the SESAM framework suggests applying successive filters to the initial species source pool, by combining different modelling approaches and rules. Here we provide a first test of this framework in mountain grassland communities. Location: The western Swiss Alps. Methods: Two implementations of the SESAM framework were tested: a "Probability ranking" rule based on species richness predictions and rough probabilities from SDMs, and a "Trait range" rule that uses the predicted upper and lower bound of community-level distribution of three different functional traits (vegetative height, specific leaf area and seed mass) to constraint a pool of environmentally filtered species from binary SDMs predictions. Results: We showed that all independent constraints expectedly contributed to reduce species richness overprediction. Only the "Probability ranking" rule allowed slightly but significantly improving predictions of community composition. Main conclusion: We tested various ways to implement the SESAM framework by integrating macroecological constraints into S-SDM predictions, and report one that is able to improve compositional predictions. We discuss possible improvements, such as further improving the causality and precision of environmental predictors, using other assembly rules and testing other types of ecological or functional constraints.
Resumo:
Contact zones of closely related and ecologically similar species constitute rare opportunities to study the evolutionary consequences of past speciation processes. They represent natural laboratories in which strong competition could lead to the exclusion of one species, or the various species may switch into distinct ecological niches. Alternatively, if reproductive isolation has not yet been achieved, they may hybridize. We elucidate the degree of taxon integrity by comparing genetics and habitat use of three similar-sized congeneric viper species, Vipera ammodytes, Viperaaspis, and Viperaberus, of Nadiza Valley in western Slovenia. No hybridization was detected for either mitochondrial or nuclear genomes. Similarly, external intermediacy by a single prestudy viper (probably V.ammodytesxV. aspis) indicates that hybridization occasionally occurs, but should be very rare. Populations of the three related viperids are partially allopatric in Nadiza Valley, but they also coexist in a narrow contact zone in the montane grassland along the south-exposed slope of Mount Stol (1673m a.s.l.). Here, the three species that occupy areas in or near patches of rocky microhabitats (e.g. stone piles, slides, and walls) live in syntopy. However, fine-scale measurements of structural components show partial habitat segregation, in which V.berus becomes more dominant at elevations above 1400m and occupies mostly the mountain ridge and north-exposed slopes of Mount Stol, V.aspis occurs below 1300m and is the only species to inhabit stoneless patches of grass and bushes around 1000m and lower, and V.ammodytes occurs at all elevations up to 1500m, but is restricted to a rocky microhabitat. We suggest that a high degree of microstructure divergence, slightly different environmental niches, and a generally favourable habitat for all three viper species, keep the pressure for mis-mating and hybridization low, although mechanisms such as reduced hybrid inferiority and temporal mating segregation cannot yet be excluded.