184 resultados para FUNCTIONAL MAGNETIC RESONANCE IMAGING
Resumo:
As future treatments increasingly target the protein chemistry underlying the different dementias, itbecomes crucially important to distinguish between the dementias during life. Neither specific proteinnor genetic markers are as yet available in clinical practice. However, neuroimaging is an obviouscandidate technique that may yield enhanced diagnostic accuracy when applied to thedementias. The physiopathology and anatomopathology is complex in dementia with Lewy bodies(DLB). Besides the relative sparing of medial temporal lobe structures in DLB in comparison toAlzheimer's disease, no clear signature pattern of cerebral atrophy associated with DLB has beenestablished so far. Among others, one reason may be the difficulty in visualizing the small brainnuclei that are differentially involved among the dementias. While we think that structural magneticresonance imaging neuroimaging should be part of the diagnostic workup of most dementia syndromesdue to its usefulness in the differential diagnosis, its contribution to a positive diagnosis ofDLB is as yet limited. The development of different neuroimaging techniques may help distinguishreliably DLB from other neurodegenerative disorders. However, in order to become accepted as partof standard care, these techniques must still prove their effectiveness under routine conditions suchas those encountered by the general practitioner.
Resumo:
Rupture of a congenital aneurysm of the sinus of Valsalva is a rare congenital cardiac malformation. This case report describes a congenital aneurysm of the sinus of Valsalva which ruptured into the right ventricle in a 3-year-old girl. The exact route of the fistula through the cardiac walls and the localization of the rupture into the right ventricle was not completely defined by two-dimensional and color Doppler echocardiography and could be determined only by magnetic resonance imaging (MRI).
Resumo:
BACKGROUND: Many patients with an implantable cardioverter-defibrillator (ICD) have indications for magnetic resonance imaging (MRI). However, MRI is generally contraindicated in ICD patients because of potential risks from hazardous interactions between the MRI and ICD system. OBJECTIVE: The purpose of this study was to use preclinical computer modeling, animal studies, and bench and scanner testing to demonstrate the safety of an ICD system developed for 1.5-T whole-body MRI. METHODS: MRI hazards were assessed and mitigated using multiple approaches: design decisions to increase safety and reliability, modeling and simulation to quantify clinical MRI exposure levels, animal studies to quantify the physiologic effects of MRI exposure, and bench testing to evaluate safety margin. RESULTS: Modeling estimated the incidence of a chronic change in pacing capture threshold >0.5V and 1.0V to be less than 1 in 160,000 and less than 1 in 1,000,000 cases, respectively. Modeling also estimated the incidence of unintended cardiac stimulation to occur in less than 1 in 1,000,000 cases. Animal studies demonstrated no delay in ventricular fibrillation detection and no reduction in ventricular fibrillation amplitude at clinical MRI exposure levels, even with multiple exposures. Bench and scanner testing demonstrated performance and safety against all other MRI-induced hazards. CONCLUSION: A preclinical strategy that includes comprehensive computer modeling, animal studies, and bench and scanner testing predicts that an ICD system developed for the magnetic resonance environment is safe and poses very low risks when exposed to 1.5-T normal operating mode whole-body MRI.
Resumo:
Our objective was to establish the age-related 3D size of maxillary, sphenoid, and frontal sinuses. A total of 179 magnetic resonance imaging (MRI) of children under 17 years (76 females, 103 males) were included and sinuses were measured in the three axes. Maxillary sinuses measured at birth (mean+/-standard deviation) 7.3+/-2.7 mm length (or antero-posterior)/4.0+/-0.9 mm height (or cranio-caudal)/2.7+/-0.8 mm width (or transverse). At 16 years old, maxillary sinus measured 38.8+/-3.5 mm/36.3+/-6.2 mm/27.5+/-4.2 mm. Sphenoid sinus pneumatization starts in the third year of life after conversion from red to fatty marrow with mean values of 5.8+/-1.4 mm/8.0+/-2.3 mm/5.8+/-1.0 mm. Pneumatization progresses gradually to reach at 16 years 23.0+/-4.5 mm/22.6+/-5.8 mm/12.8+/-3.1 mm. Frontal sinuses present a wide variation in size and most of the time are not valuable with routine head MRI techniques. They are not aerated before the age of 6 years. Frontal sinuses dimensions at 16 years were 12.8+/-5.0 mm/21.9+/-8.4 mm/24.5+/-13.3 mm. A sinus volume index (SVI) of maxillary and sphenoid sinus was computed using a simplified ellipsoid volume formula, and a table with SVI according to age with percentile variations is proposed for easy clinical application. Percentile curves of maxillary and sphenoid sinuses are presented to provide a basis for objective determination of sinus size and volume during development. These data are applicable to other techniques such as conventional X-ray and CT scan.
Resumo:
Coronary magnetic resonance imaging is a powerful non-invasive technique for the combined assessment of coronary artery anatomy and function. In the present review article, challenges in coronary artery imaging are discussed and results obtained in both healthy volunteers and patients with cardiovascular disease are presented. This includes a short overview of coronary artery vessel lumen and wall imaging, contrast agents, permeability of the coronary vessel wall, high-field imaging and imaging of endothelial function.
Resumo:
BACKGROUND: Diffusion-weighted magnetic resonance imaging (MRI) is increasingly being used for assessing the treatment succes in oncology, but the real clinical value needs to evaluated by comparison with other, already established, metabolic imaging techniques. PURPOSE: To prospectively evaluate the clinical potential of diffusion-weighted MRI with apparent diffusion coefficient (ADC) mapping for gastrointestinal stromal tumor (GIST) response to targeted therapy compared with 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). MATERIAL AND METHODS: Eight patients (mean age, 56 ± 11 years) known to have metastatic GIST underwent 18F-FDG PET/CT and MRI (T1Gd, DWI [b = 50,300,600], ADC mapping) simultaneously, before and after change in targeted therapy. MR and PET/CT examinations were first analyzed blindly. Second, PET/CT images were co-registered with T1Gd-MR images for lesion detection. Only 18F-FDG avid lesions were considered. Maximum standardized uptake value (SUVmax) and the corresponding minimum ADCmin were measured for the six largest lesions per patient, if any, on baseline and follow-up examinations. The relationship between changes in SUVmax and ADCmin was analyzed (Spearman's correlation). RESULTS: Twenty-four metastases (12 hepatic, 12 extra-hepatic) were compared on PET/CT and MR images. SUVmax decreased from 7.7 ± 8.1 g/mL to 5.5 ± 5.4 g/mL (P = 0.20), while ADCmin increased from 1.2 ± 0.3 × 10(-3)mm(2)/s to 1.5 ± 0.3 × 10(-3)mm(2)/s (P = 0.0002). There was a significant association between changes in SUVmax and ADCmin (rho = - 0.62, P = 0.0014), but not between changes in lesions size (P = 0.40). CONCLUSION: Changes in ADCmin correlated with the response of 18F-FDG avid GIST to targeted therapy. Thus, diffusion-weighted MRI may represent a radiation-free alternative for follow-up treatment for metastatic GIST patients.
Resumo:
Methods are presented to map complex fiber architectures in tissues by imaging the 3D spectra of tissue water diffusion with MR. First, theoretical considerations show why and under what conditions diffusion contrast is positive. Using this result, spin displacement spectra that are conventionally phase-encoded can be accurately reconstructed by a Fourier transform of the measured signal's modulus. Second, studies of in vitro and in vivo samples demonstrate correspondence between the orientational maxima of the diffusion spectrum and those of the fiber orientation density at each location. In specimens with complex muscular tissue, such as the tongue, diffusion spectrum images show characteristic local heterogeneities of fiber architectures, including angular dispersion and intersection. Cerebral diffusion spectra acquired in normal human subjects resolve known white matter tracts and tract intersections. Finally, the relation between the presented model-free imaging technique and other available diffusion MRI schemes is discussed.
Resumo:
Clinical use of the Stejskal-Tanner diffusion weighted images is hampered by the geometric distortions that result from the large residual 3-D eddy current field induced. In this work, we aimed to predict, using linear response theory, the residual 3-D eddy current field required for geometric distortion correction based on phantom eddy current field measurements. The predicted 3-D eddy current field induced by the diffusion-weighting gradients was able to reduce the root mean square error of the residual eddy current field to ~1 Hz. The model's performance was tested on diffusion weighted images of four normal volunteers, following distortion correction, the quality of the Stejskal-Tanner diffusion-weighted images was found to have comparable quality to image registration based corrections (FSL) at low b-values. Unlike registration techniques the correction was not hindered by low SNR at high b-values, and results in improved image quality relative to FSL. Characterization of the 3-D eddy current field with linear response theory enables the prediction of the 3-D eddy current field required to correct eddy current induced geometric distortions for a wide range of clinical and high b-value protocols.
Resumo:
MRI tractography is the mapping of neural fiber pathways based on diffusion MRI of tissue diffusion anisotropy. Tractography based on diffusion tensor imaging (DTI) cannot directly image multiple fiber orientations within a single voxel. To address this limitation, diffusion spectrum MRI (DSI) and related methods were developed to image complex distributions of intravoxel fiber orientation. Here we demonstrate that tractography based on DSI has the capacity to image crossing fibers in neural tissue. DSI was performed in formalin-fixed brains of adult macaque and in the brains of healthy human subjects. Fiber tract solutions were constructed by a streamline procedure, following directions of maximum diffusion at every point, and analyzed in an interactive visualization environment (TrackVis). We report that DSI tractography accurately shows the known anatomic fiber crossings in optic chiasm, centrum semiovale, and brainstem; fiber intersections in gray matter, including cerebellar folia and the caudate nucleus; and radial fiber architecture in cerebral cortex. In contrast, none of these examples of fiber crossing and complex structure was identified by DTI analysis of the same data sets. These findings indicate that DSI tractography is able to image crossing fibers in neural tissue, an essential step toward non-invasive imaging of connectional neuroanatomy.
Resumo:
The PERFORM MRI Project was an ancillary study of the PERFORM trial. Its aim was to investigate the potential effects of terutroban in patients with atherothrombotic disorders, in comparison to aspirin, on the evolution of magnetic resonance imaging (MRI) lesions after a recent ischemic stroke or transient ischemic attack (TIA). The change in both hypointense and hyperintense lesions on the fluid attenuated inversion recovery (FLAIR) sequence, in the total brain volume and in the hippocampal volume from baseline (M1) to the final visit (M24) was assessed as well as the number of emergent microbleeds. A total of 748 patients had their MRI examination validated both at M1 and M24 during the study. At baseline, the volume of hypointense and hyperintense lesions on FLAIR images, the total brain volume, the hippocampal volume and the number of patients with microbleeds did not differ between the two groups. During follow-up, the mean volumetric increase of lesions hypointense or hyperintense on FLAIR images (from 5 to 8 %), the mean reduction of total brain volume (−0.4 %) and of hippocampal volume (−4 %), did not differ between the two treatment arms. The same parameters analysed ipsilateral to the ischaemic lesion did not differ either between the two groups. In the terutroban group, 16.3 % of patients presented with emergent microbleeds, 10.7 % in the aspirin group; this difference was not significant. In the PERFORM study, the progression of FLAIR lesions, of cerebral or hippocampal atrophy and of microbleeds did not differ between patients treated by terutroban and those treated by aspirin.
Resumo:
PURPOSE: F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) and MRI are used for detecting liver metastases from uveal melanoma. The introduction of new treatment options in clinical trials might benefit from early response assessment. Here, we determine the value of FDG-PET/CT with respect to MRI at diagnosis and its potential for monitoring therapy. MATERIAL AND METHODS: Ten patients with biopsy-proven liver metastases of uveal melanoma enrolled in a randomized phase III trial (NCT00110123) underwent both FDG-PET coupled with unenhanced CT and gadolinium-diethylene triamine pentaacetic acid-enhanced liver MRI within 4 weeks. FDG-PET and MRI were evaluated blindly and then compared using the ratio of lesion to normal liver parenchyma PET-derived standardized uptake value (SUV). The influence of lesion size and response to chemotherapy were studied. RESULTS: Overall, 108 liver lesions were seen: 34 (31%) on both modalities (1-18 lesions/patient), four (4%) by PET/CT only, and 70 (65%) by MRI only. SUV correlated with MRI lesion size (r=0.81, P<0.0001). PET/CT detected 26 of 33 (79%) MRI lesions of more than or equal to 1.2 cm, whereas it detected only eight of 71 (11%) lesions of less than 1.2 cm (P<0.0001). MRI lesions without PET correspondence were small (0.6±0.2 vs. 2.1±1.1 cm, P<0.0001). During follow-up (six patients, 30 lesions), the ratio lesion-to-normal-liver SUV diminished in size-stable lesions (1.90±0.64-1.46±0.50, P<0.0001), whereas it increased in enlarging lesions (1.56±0.40-1.99±0.56, P=0.032). CONCLUSION: MRI outweighs PET/CT for detecting small liver metastases. However, PET/CT detected at least one liver metastasis per patient and changes in FDG uptake not related to size change, suggesting a role in assessing early therapy response.
Resumo:
PURPOSE: To determine and compare the diagnostic performance of magnetic resonance imaging (MRI) and computed tomography (CT) for the diagnosis of tumor extent in advanced retinoblastoma, using histopathologic analysis as the reference standard. DESIGN: Systematic review and meta-analysis. PARTICIPANTS: Patients with advanced retinoblastoma who underwent MRI, CT, or both for the detection of tumor extent from published diagnostic accuracy studies. METHODS: Medline and Embase were searched for literature published through April 2013 assessing the diagnostic performance of MRI, CT, or both in detecting intraorbital and extraorbital tumor extension of retinoblastoma. Diagnostic accuracy data were extracted from included studies. Summary estimates were based on a random effects model. Intrastudy and interstudy heterogeneity were analyzed. MAIN OUTCOME MEASURES: Sensitivity and specificity of MRI and CT in detecting tumor extent. RESULTS: Data of the following tumor-extent parameters were extracted: anterior eye segment involvement and ciliary body, optic nerve, choroidal, and (extra)scleral invasion. Articles on MRI reported results of 591 eyes from 14 studies, and articles on CT yielded 257 eyes from 4 studies. The summary estimates with their 95% confidence intervals (CIs) of the diagnostic accuracy of conventional MRI at detecting postlaminar optic nerve, choroidal, and scleral invasion showed sensitivities of 59% (95% CI, 37%-78%), 74% (95% CI, 52%-88%), and 88% (95% CI, 20%-100%), respectively, and specificities of 94% (95% CI, 84%-98%), 72% (95% CI, 31%-94%), and 99% (95% CI, 86%-100%), respectively. Magnetic resonance imaging with a high (versus a low) image quality showed higher diagnostic accuracies for detection of prelaminar optic nerve and choroidal invasion, but these differences were not statistically significant. Studies reporting the diagnostic accuracy of CT did not provide enough data to perform any meta-analyses. CONCLUSIONS: Magnetic resonance imaging is an important diagnostic tool for the detection of local tumor extent in advanced retinoblastoma, although its diagnostic accuracy shows room for improvement, especially with regard to sensitivity. With only a few-mostly old-studies, there is very little evidence on the diagnostic accuracy of CT, and generally these studies show low diagnostic accuracy. Future studies assessing the role of MRI in clinical decision making in terms of prognostic value for advanced retinoblastoma are needed.
Resumo:
INTRODUCTION: Lumbar spinal stenosis (LSS) treatment is based primarily on the clinical criteria providing that imaging confirms radiological stenosis. The radiological measurement more commonly used is the dural sac cross-sectional area (DSCA). It has been recently shown that grading stenosis based on the morphology of the dural sac as seen on axial T2 MRI images, better reflects severity of stenosis than DSCA and is of prognostic value. This radiological prospective study investigates the variability of surface measurements and morphological grading of stenosis for varying degrees of angulation of the T2 axial images relative to the disc space as observed in clinical practice. MATERIALS AND METHODS: Lumbar spine TSE T2 three-dimensional (3D) MRI sequences were obtained from 32 consecutive patients presenting with either suspected spinal stenosis or low back pain. Axial reconstructions using the OsiriX software at 0°, 10°, 20° and 30° relative to the disc space orientation were obtained for a total of 97 levels. For each level, DSCA was digitally measured and stenosis was graded according to the 4-point (A-D) morphological grading by two observers. RESULTS: A good interobserver agreement was found in grade evaluation of stenosis (k = 0.71). DSCA varied significantly as the slice orientation increased from 0° to +10°, +20° and +30° at each level examined (P < 0.0001) (-15 to +32% at 10°, -24 to +143% at 20° and -29 to +231% at 30° of slice orientation). Stenosis definition based on the surface measurements changed in 39 out of the 97 levels studied, whereas the morphology grade was modified only in two levels (P < 0.01). DISCUSSION: The need to obtain continuous slices using the classical 2D MRI acquisition technique entails often at least a 10° slice inclination relative to one of the studied discs. Even at this low angulation, we found a significantly statistical difference between surface changes and morphological grading change. In clinical practice, given the above findings, it might therefore not be necessary to align the axial cuts to each individual disc level which could be more time-consuming than obtaining a single series of axial cuts perpendicular to the middle of the lumbar spine or to the most stenotic level. In conclusion, morphological grading seems to offer an alternative means of assessing severity of spinal stenosis that is little affected by image acquisition technique.