20 resultados para Escherichia coli cells
Resumo:
The RuvB protein is induced in Escherichia coli as part of the SOS response to DNA damage. It is required for genetic recombination and the postreplication repair of DNA. In vitro, the RuvB protein promotes the branch migration of Holliday junctions and has a DNA helicase activity in reactions that require ATP hydrolysis. We have used electron microscopy, image analysis, and three-dimensional reconstruction to show that the RuvB protein, in the presence of ATP, forms a dodecamer on double-stranded DNA in which two stacked hexameric rings encircle the DNA and are oriented in opposite directions with D6 symmetry. Although helicases are ubiquitous and essential for many aspects of DNA repair, replication, and transcription, three-dimensional reconstruction of a helicase has not yet been reported, to our knowledge. The structural arrangement that is seen may be common to other helicases, such as the simian virus 40 large tumor antigen.
Resumo:
Limited antimicrobial agents are available for the treatment of implant-associated infections caused by fluoroquinolone-resistant Gram-negative bacilli. We compared the activities of fosfomycin, tigecycline, colistin, and gentamicin (alone and in combination) against a CTX-M15-producing strain of Escherichia coli (Bj HDE-1) in vitro and in a foreign-body infection model. The MIC and the minimal bactericidal concentration in logarithmic phase (MBC(log)) and stationary phase (MBC(stat)) were 0.12, 0.12, and 8 μg/ml for fosfomycin, 0.25, 32, and 32 μg/ml for tigecycline, 0.25, 0.5, and 2 μg/ml for colistin, and 2, 8, and 16 μg/ml for gentamicin, respectively. In time-kill studies, colistin showed concentration-dependent activity, but regrowth occurred after 24 h. Fosfomycin demonstrated rapid bactericidal activity at the MIC, and no regrowth occurred. Synergistic activity between fosfomycin and colistin in vitro was observed, with no detectable bacterial counts after 6 h. In animal studies, fosfomycin reduced planktonic counts by 4 log(10) CFU/ml, whereas in combination with colistin, tigecycline, or gentamicin, it reduced counts by >6 log(10) CFU/ml. Fosfomycin was the only single agent which was able to eradicate E. coli biofilms (cure rate, 17% of implanted, infected cages). In combination, colistin plus tigecycline (50%) and fosfomycin plus gentamicin (42%) cured significantly more infected cages than colistin plus gentamicin (33%) or fosfomycin plus tigecycline (25%) (P < 0.05). The combination of fosfomycin plus colistin showed the highest cure rate (67%), which was significantly better than that of fosfomycin alone (P < 0.05). In conclusion, the combination of fosfomycin plus colistin is a promising treatment option for implant-associated infections caused by fluoroquinolone-resistant Gram-negative bacilli.
Resumo:
The anaerobic transcriptional regulator ANR induces the arginine deiminase and denitrification pathways in Pseudomonas aeruginosa during oxygen limitation. The homologous activator FNR of Escherichia coli, when introduced into an anr mutant of P. aeruginosa, could functionally replace ANR for anaerobic growth on nitrate but not for anaerobic induction of arginine deiminase. In an FNR-positive E. coli strain, the ANR-dependent promoter of the arcDABC operon, which encodes the enzymes of the arginine deiminase pathway, was not expressed. To analyse systematically these distinct induction patterns, a lacZ promoter-probe, broad-host-range plasmid containing various -40 regions (the ANR/FNR recognition sequences) and -10 promoter sequences was constructed. These constructs were tested in P. aeruginosa and in E. coli expressing either ANR or FNR. In conjunction with the consensus -10 hexamer of E. coli sigma 70 RNA polymerase (TATAAT), the consensus FNR site (TTGAT ..... ATCAA) was recognized efficiently by ANR and FNR in both hosts. By contrast, when promoters contained the Arc box (TTGAC .... ATCAG), which is found in the arcDABC promoter, or a symmetrical mutant FNR site (CTGAT .... ATCAG), ANR was a more effective activator than was FNR. Conversely, an extended 22 bp, fully symmetrical FNR site allowed better activation with FNR than with ANR. Combination of the arc promoter -10 sequence (CCTAAT) with the Arc box or the consensus FNR site resulted in good ANR-dependent expression in P. aeruginosa but gave practically no expression in E. coli, suggesting that RNA polymerase of P. aeruginosa differs from the E. coli enzyme in -10 recognition specificity. In conclusion, ANR and FNR are able to activate the RNA polymerases of P. aeruginosa and E. coli when the -40 and -10 promoter elements ae identical or close to the E. coli consensus sequences.
Resumo:
Salt and heat stresses, which are often combined in nature, induce complementing defense mechanisms. Organisms adapt to high external salinity by accumulating small organic compounds known as osmolytes, which equilibrate cellular osmotic pressure. Osmolytes can also act as "chemical chaperones" by increasing the stability of native proteins and assisting refolding of unfolded polypeptides. Adaptation to heat stress depends on the expression of heat-shock proteins, many of which are molecular chaperones, that prevent protein aggregation, disassemble protein aggregates, and assist protein refolding. We show here that Escherichia coli cells preadapted to high salinity contain increased levels of glycine betaine that prevent protein aggregation under thermal stress. After heat shock, the aggregated proteins, which escaped protection, were disaggregated in salt-adapted cells as efficiently as in low salt. Here we address the effects of four common osmolytes on chaperone activity in vitro. Systematic dose responses of glycine betaine, glycerol, proline, and trehalose revealed a regulatory effect on the folding activities of individual and combinations of chaperones GroEL, DnaK, and ClpB. With the exception of trehalose, low physiological concentrations of proline, glycerol, and especially glycine betaine activated the molecular chaperones, likely by assisting local folding in chaperone-bound polypeptides and stabilizing the native end product of the reaction. High osmolyte concentrations, especially trehalose, strongly inhibited DnaK-dependent chaperone networks, such as DnaK+GroEL and DnaK+ClpB, likely because high viscosity affects dynamic interactions between chaperones and folding substrates and stabilizes protein aggregates. Thus, during combined salt and heat stresses, cells can specifically control protein stability and chaperone-mediated disaggregation and refolding by modulating the intracellular levels of different osmolytes.
Resumo:
We conducted a survey including 3334 bloodstream infections (BSIs) due to E. coli diagnosed in 2005-2014 at a stable cohort of hospitals. Marked increases in incidence were observed for community-acquired (CA) BSIs in patients aged >75 years, CA-BSIs of digestive origin in patients aged 60-74 years, healthcare-associated BSIs, and BSIs associated with ESBL (extended-spectrum B-lactamase)-producing E. coli (ESBLEc). Using MLST, we studied the genetic diversity of 412 BSI isolates recovered during the 2014 survey: 7 major sequence type complexes (STCs) were revealed in phylogenetic group B2, 3 in group A/B1 and 2 in group D. Among the 31 ESBLEc isolates, 1/3 belonged to STC 131. We searched for possible associations between clonal groups, clinical determinants and characteristics of BSIs: isolates from groups B2 (except STC 131) and D were susceptible to antibiotics and associated with BSIs of urinary origin in patients <60 years. STC 131 and group A/B1 isolates were multi-drug resistant and associated with CA-BSIs of digestive origin in patients aged 60-74 with a recent history of antibiotic treatment. STC 131 isolates were associated with HCA-BSIs in patients with recent/present hospitalization in a long-stay unit. We provide a unique population-based picture of the epidemiology of E. coli BSI. The aging nature of the population led to an increase in the number of cases caused by the B2 and D isolates generally implicated in BSIs. In addition, the association of a trend toward increasing rates of gut colonization with multi drug-resistant isolates revealed by the rise in the incidence of BSIs of digestive origin caused by STC 131 and A/B1 (STCs 10, 23, and 155) isolates, and a significant increase in the frequency of BSIs in elderly patients with recent antibiotic treatment suggested that antibiotic use may have contributed to the growing incidence of BSI.