21 resultados para Er ya.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Trastuzumab (T) is a cornerstone in the treatment of patients with HER2-overexpressing advanced breast cancer and development of resistance to T is a major therapeutic problem. HER-2 is part of a highly interactive signaling network that may impair efficacy of endocrine therapy. A sequential treatment design was chosen in this trial to ensure complete resistance to single agent therapy before receiving both a non-steroidal aromatase inhibitor (AI) and T. Any kind of clinical activity with combined treatment of AI and T after progression of single agent treatments could indicate restoration of sensitivity as a consequence of cross-talking and networking between both pathways. Methods: Key eligibility criteria included postmenopausal patients (pts.) with advanced, measurable, HER-2 positive (assessed by FISH, ratio (≥2)), HR positive disease and progression on prior treatment with a non-steroidal AI, e.g. letrozole or anastrozole, either in an adjuvant or advanced setting. Pts. received standard dose T monotherapy either weekly or three-weekly in step 1 and upon disease progression, continued T in combination with letrozole in step 2. The primary endpoint was clinical benefit response (CBR: CR, PR or SD for at least 24 weeks (+/- 1 week) according to RECIST) in step 2. Results: Thirteen pts. were enrolled in five centers in Switzerland. In step 1, six pts. (46%) achieved CBR. Median time to progression (TTP) was 161 days (Range: 50 - 627). Based on data collected until the end of May 2010, CBR was observed in seven out of the eleven evaluable pts. (64%) in step 2, including one pt. with partial response. Four of the seven pts. within step 2 that achieved CBR also had CBR in step 1. Seven out of eleven pts. have documented tumor progression during step 2 treatment. Median TTP for all eleven pts. was 184 days (range 61 - 471). Mean time on study treatment (TTP in step 1 plus TTP in step 2) for pts. reaching step 2 was 380 days (range 174 - 864). Adverse events were generally mild. Conclusion: Results of this proof-of-principle trial suggest that complete resistance to both AI and T can be overcome in a proportion of pts. by combined treatment of AI and T, as all pts. served as their own control. Our results appear promising for a new treatment strategy which offers a chemotherapy-free and well-tolerated option for at least a subset of the pts. with HR positive, HER-2 positive breast cancer. Further trials will need to corroborate this finding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the pathology of Morbillivirus in the central nervous system (CNS) is well described, the molecular basis of neurodegenerative events still remains poorly understood. As a model to explore Morbillivirus-mediated CNS dysfunctions, we used canine distemper virus (CDV) that we inoculated into two different cell systems: a monkey cell line (Vero) and rat primary hippocampal neurons. Importantly, the recombinant CDV used in these studies not only efficiently infects both cell types but recapitulates the uncommon, non-cytolytic cell-to-cell spread mediated by virulent CDVs in brain of dogs. Here, we demonstrated that both CDV surface glycoproteins (F and H) markedly accumulated in the endoplasmic reticulum (ER). This accumulation triggered an ER stress, characterized by increased expression of the ER resident chaperon calnexin and the proapoptotic transcription factor CHOP/GADD 153. The expression of calreticulin (CRT), another ER resident chaperon critically involved in the response to misfolded proteins and in Ca(2+) homeostasis, was also upregulated. Transient expression of recombinant CDV F and H surface glycoproteins in Vero cells and primary hippocampal neurons further confirmed a correlation between their accumulation in the ER, CRT upregulation, ER stress and disruption of ER Ca(2+) homeostasis. Furthermore, CDV infection induced CRT fragmentation with re-localisation of a CRT amino-terminal fragment, also known as vasostatin, on the surface of infected and neighbouring non-infected cells. Altogether, these results suggest that ER stress, CRT fragmentation and re-localization on the cell surface may contribute to cytotoxic effects and ensuing cell dysfunctions triggered by Morbillivirus, a mechanism that might potentially be relevant for other neurotropic viruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seventy-five percent of breast cancers are estrogen receptor α positive (ER(+)). Research on these tumors is hampered by lack of adequate in vivo models; cell line xenografts require non-physiological hormone supplements, and patient-derived xenografts (PDXs) are hard to establish. We show that the traditional grafting of ER(+) tumor cells into mammary fat pads induces TGFβ/SLUG signaling and basal differentiation when they require low SLUG levels to grow in vivo. Grafting into the milk ducts suppresses SLUG; ER(+) tumor cells develop, like their clinical counterparts, in the presence of physiological hormone levels. Intraductal ER(+) PDXs are retransplantable, predictive, and appear genomically stable. The model provides opportunities for translational research and the study of physiologically relevant hormone action in breast carcinogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NlmCategory="UNASSIGNED">Preserving β cell function during the development of obesity and insulin resistance would limit the worldwide epidemic of type 2 diabetes (T2DM). Endoplasmic reticulum (ER) calcium (Ca(2+)) depletion induced by saturated free fatty acids and cytokines causes β cell ER stress and apoptosis, but the molecular mechanisms behind these phenomena are still poorly understood. Here, we demonstrate that palmitate-induced sorcin (SRI) down-regulation, and subsequent increases in glucose-6-phosphatase catalytic subunit-2 (G6PC2) levels contribute to lipotoxicity. SRI is a calcium sensor protein involved in maintaining ER Ca(2+) by inhibiting ryanodine receptor activity and playing a role in terminating Ca(2+)-induced Ca(2+) release. G6PC2, a GWAS gene associated with fasting blood glucose, is a negative regulator of glucose-stimulated insulin secretion (GSIS). High fat feeding in mice and chronic exposure of human islets to palmitate decreases endogenous SRI expression while levels of G6PC2 mRNA increase. Sorcin null mice are glucose intolerant, with markedly impaired GSIS and increased expression of G6pc2. Under high fat diet, mice overexpressing SRI in the β cell display improved glucose tolerance, fasting blood glucose and GSIS, whereas G6PC2 levels are decreased and cytosolic and ER Ca(2+) are increased in transgenic islets. SRI may thus provide a target for intervention in T2DM.