218 resultados para Epilepsie, Hippocampus, Dopamin, Methylxanthinen, GABA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although functional neuroimaging studies have supported the distinction between explicit and implicit forms of memory, few have matched explicit and implicit tests closely, and most of these tested perceptual rather than conceptual implicit memory. We compared event-related fMRI responses during an intentional test, in which a group of participants used a cue word to recall its associate from a prior study phase, with those in an incidental test, in which a different group of participants used the same cue to produce the first associate that came to mind. Both semantic relative to phonemic processing at study, and emotional relative to neutral word pairs, increased target completions in the intentional test, but not in the incidental test, suggesting that behavioral performance in the incidental test was not contaminated by voluntary explicit retrieval. We isolated the neural correlates of successful retrieval by contrasting fMRI responses to studied versus unstudied cues for which the equivalent "target" associate was produced. By comparing the difference in this repetition-related contrast across the intentional and incidental tests, we could identify the correlates of voluntary explicit retrieval. This contrast revealed increased bilateral hippocampal responses in the intentional test, but decreased hippocampal responses in the incidental test. A similar pattern in the bilateral amygdale was further modulated by the emotionality of the word pairs, although surprisingly only in the incidental test. Parietal regions, however, showed increased repetition-related responses in both tests. These results suggest that the neural correlates of successful voluntary explicit memory differ in directionality, even if not in location, from the neural correlates of successful involuntary implicit (or explicit) memory, even when the incidental test taps conceptual processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abnormalities in hippocampal structure and function have been reported in a number of human neuropathological and neurodevelopmental disorders, including Alzheimer's disease, autism spectrum disorders, Down syndrome, epilepsy, and schizophrenia. Given the complexity of these disorders, animal studies are invaluable and remain to date irreplaceable, providing fundamental knowledge regarding the basic mechanisms underlying normal and pathological human brain structure and function. However, there is a prominent ill-conceived view in current research that scientists should be restricted to using animal models of human diseases that can lead to results applicable to humans within a few years. Although there is no doubt that translational studies of this kind are important and necessary, limiting animal studies to applicable questions is counterproductive and will ultimately lead to a lack of knowledge and an inability to address human health problems. Here, we discuss findings regarding the normal postnatal development of the monkey hippocampal formation, which provide an essential framework to consider the etiologies of different neuropathological disorders affecting human hippocampal structure and function. We focus on studies of gene expression in distinct hippocampal regions that shed light on some basic mechanisms that might contribute to the etiology of schizophrenia. We argue that researchers, as well as clinicians, should not consider the use of animals in research only as 'animal models' of human diseases, as they will continue to need and benefit from a better understanding of the normal structure and functions of the hippocampus in 'model animals'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chloride channels represent a group of targets for major clinical indications. However, molecular screening for chloride channel modulators has proven to be difficult and time-consuming as approaches essentially rely on the use of fluorescent dyes or invasive patch-clamp techniques which do not lend themselves to the screening of large sets of compounds. To address this problem, we have developed a non-invasive optical method, based on digital holographic microcopy (DHM), allowing monitoring of ion channel activity without using any electrode or fluorescent dye. To illustrate this approach, GABA(A) mediated chloride currents have been monitored with DHM. Practically, we show that DHM can non-invasively provide the quantitative determination of transmembrane chloride fluxes mediated by the activation of chloride channels associated with GABA(A) receptors. Indeed through an original algorithm, chloride currents elicited by application of appropriate agonists of the GABA(A) receptor can be derived from the quantitative phase signal recorded with DHM. Finally, chloride currents can be determined and pharmacologically characterized non-invasively simultaneously on a large cellular sampling by DHM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using immunohistology, electron microscopy, electrophysiology and optogenetics, we found that proliferating adult mouse hippocampal neural precursors received immature GABAergic synaptic inputs from parvalbumin-expressing interneurons. Recently shown to suppress adult quiescent neural stem cell activation, parvalbumin interneuron activation promoted newborn neuronal progeny survival and development. Our results suggest a niche mechanism involving parvalbumin interneurons that couples local circuit activity to the diametric regulation of two critical early phases of adult hippocampal neurogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hippocampal adult neurogenesis results in the continuous formation of new neurons in the adult hippocampus, which participate to learning and memory. Manipulations increasing adult neurogenesis have a huge clinical potential in pathologies involving memory loss. Intringuingly, most of the newborn neurons die during their maturation. Thus, increasing newborn neuron survival during their maturation may be a powerful way to increase overall adult neurogenesis. The factors governing this neuronal death are yet poorly known. In my PhD project, we made the hypothesis that synaptogenesis and synaptic activity play a role in the survival of newborn hippocampal neurons. We studied three factors potentially involved in the regulation of the synaptic integration of adult-born neurons. First, we used propofol anesthesia to provoke a global increase in GABAergic activity of the network, and we evaluated the outcome on newborn neuron synaptic integration, morphological development and survival. Propofol anesthesia impaired the dendritic maturation and survival of adult-born neurons in an age-dependent manner. Next, we examined the development of astrocytic ensheathment on the synapses formed by newborn neurons, as we hypothesized that astrocytes are involved in their synaptic integration. Astrocytic processes ensheathed the synapses of newborn neurons very early in their development, and the processes modulated synaptic transmission on these cells. Finally, we studied the cell-autonomous effects of the overexpression of synaptic adhesion molecules on the development, synaptic integration and survival of newborn neurons, and we found that manipulating of a single adhesion molecule was sufficient to modify synaptogenesis and/or synapse function, and to modify newborn neuron survival. Together, these results suggest that the activity of the neuronal network, the modulation of glutamate transport by astrocytes, and the synapse formation and activity of the neuron itself may regulate the survival of newborn neurons. Thus, the survival of newborn neurons may depend on their ability to communicate with the network. This knowledge is crucial for finding ways to increase neurogenesis in patients. More generally, understanding how the neurogenic niche works and which factors are important for the generation, maturation and survival of neurons is fundamental to be able to maybe, one day, replace neurons in any region of the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropathic pain is a major health issue and is frequently accompanied by allodynia (painful sensations in response to normally non-painful stimulations), and unpleasant paresthesia/dysesthesia, pointing to alterations in sensory pathways normally dedicated to the processing of non-nociceptive information. Interestingly, mounting evidence indicate that central glial cells are key players in allodynia, partly due to changes in the astrocytic capacity to scavenge extracellular glutamate and gamma-aminobutyric acid (GABA), through changes in their respective transporters (EAAT and GAT). In the present study, we investigated the glial changes occurring in the dorsal column nuclei, the major target of normally innocuous sensory information, in the rat spared nerve injury (SNI) model of neuropathic pain. We report that together with a robust microglial and astrocytic reaction in the ipsilateral gracile nucleus, the GABA transporter GAT-1 is upregulated with no change in GAT-3 or glutamate transporters. Furthermore, [(3)H] GABA reuptake on crude synaptosome preparation shows that transporter activity is functionally increased ipsilaterally in SNI rats. This GAT-1 upregulation appears evenly distributed in the gracile nucleus and colocalizes with astrocytic activation. Neither glial activation nor GAT-1 modulation was detected in the cuneate nucleus. Together, the present results point to GABA transport in the gracile nucleus as a putative therapeutic target against abnormal sensory perceptions related to neuropathic pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Follow-up studies of eating disorders (EDs) suggest outcomes ranging from recovery to chronic illness or death, but predictors of outcome have not been consistently identified. We tested 5151 single-nucleotide polymorphisms (SNPs) in approximately 350 candidate genes for association with recovery from ED in 1878 women. Initial analyses focused on a strictly defined discovery cohort of women who were over age 25 years, carried a lifetime diagnosis of an ED, and for whom data were available regarding the presence (n=361 ongoing symptoms in the past year, ie, 'ill') or absence (n=115 no symptoms in the past year, ie, 'recovered') of ED symptoms. An intronic SNP (rs17536211) in GABRG1 showed the strongest statistical evidence of association (p=4.63 × 10(-6), false discovery rate (FDR)=0.021, odds ratio (OR)=0.46). We replicated these findings in a more liberally defined cohort of women age 25 years or younger (n=464 ill, n=107 recovered; p=0.0336, OR=0.68; combined sample p=4.57 × 10(-6), FDR=0.0049, OR=0.55). Enrichment analyses revealed that GABA (γ-aminobutyric acid) SNPs were over-represented among SNPs associated at p<0.05 in both the discovery (Z=3.64, p=0.0003) and combined cohorts (Z=2.07, p=0.0388). In follow-up phenomic association analyses with a third independent cohort (n=154 ED cases, n=677 controls), rs17536211 was associated with trait anxiety (p=0.049), suggesting a possible mechanism through which this variant may influence ED outcome. These findings could provide new insights into the development of more effective interventions for the most treatment-resistant patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Newborn neurons are generated in the adult hippocampus from a pool of self-renewing stem cells located in the subgranular zone (SGZ) of the dentate gyrus. Their activation, proliferation, and maturation depend on a host of environmental and cellular factors but, until recently, the contribution of local neuronal circuitry to this process was relatively unknown. In their recent publication, Song and colleagues have uncovered a novel circuit-based mechanism by which release of the neurotransmitter, γ-aminobutyric acid (GABA), from parvalbumin-expressing (PV) interneurons, can hold radial glia-like (RGL) stem cells of the adult SGZ in a quiescent state. This tonic GABAergic signal, dependent upon the activation of γ(2) subunit-containing GABA(A) receptors of RGL stem cells, can thus prevent their proliferation and subsequent maturation or return them to quiescence if previously activated. PV interneurons are thus capable of suppressing neurogenesis during periods of high network activity and facilitating neurogenesis when network activity is low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synaptosomal-associated protein of 25 kDa (SNAP-25) is thought to play a key role in vesicle exocytosis and in the control of transmitter release. However, the precise mechanisms of action as well as the regulation of SNAP-25 remain unclear. Here we show by immunoprecipitation that activation of protein kinase C (PKC) by phorbol esters results in an increase in SNAP-25 phosphorylation. In addition, immunochemical analysis of two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels shows that SNAP-25 focuses as three or four distinct spots in the expected range of molecular weight and isoelectric point. Changing the phosphorylation level of the protein by incubating the slices in the presence of either a PKC agonist (phorbol 12,13-dibutyrate) or antagonist (chelerythrine) modified the distribution of SNAP-25 among these spots. Phorbol 12,13-dibutyrate increased the intensity of the spots with higher molecular weight and lower isoelectric point, whereas chelerythrine produced the opposite effect. This effect was specific for regulators of PKC, as agonists of other kinases did not produce similar changes. Induction of long-term potentiation, a property involved in learning mechanisms, and production of seizures with a GABA(A) receptor antagonist also increased the intensity of the spots with higher molecular weight and lower isoelectric point. This effect was prevented by the PKC inhibitor chelerythrine. We conclude that SNAP-25 can be phosphorylated in situ by PKC in an activity-dependent manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most intriguing functions of the brain is the ability to learn and memorize. The mechanism through which memory and learning are expressed requires the activation of NMDA receptors (NMDARs). These molecular entities are placed at the postsynaptic density of excitatory synapses and their function is tightly controlled by the actions of several modulators at the extracellular, intracellular and pore sites. A large part of the intracellular modulation comes from the action of G-protein coupled receptors (GPCRs). Through intracellular cascades typically involving kinases and phosphatases, GPCRs potentiate or inhibit NMDARs, controlling the conductive state but also the trafficking within the synapse. The GPCRs are involved in the modulation of a variety of brain functions. Many of them control cognition, memory and learning performance, therefore, their effects on NMDARs are extensively studied. The orexinergic system signals through GPCRs and it is well known for the regulation of waking, feeding, reward and autonomic functions. Moreover, it is involved in potentiating hippocampus-related cognitive tasks. Orexin receptors and fibers are present within the hippocampus, but whether these directly modulate hippocampal cells and synapses has not yet been determined. During my thesis, I studied orexinergic actions on excitatory synaptic transmission via whole-cell patch-clamp recordings in rat acute hippocampal slices. I observed that exogenously applied orexin-A (ox-A) exerted a strong inhibitory action on NMDAR-mediated synaptic potentials at mossy fiber (MF)-CA3 synapses, by postsynaptically activating orexin-2 receptors, a minor inhibition at Schaffer collateral-CAl synapses and did not affect other synapses with the CA3 area. Moreover, I demonstrated that the susceptibility of NMDARs to ox- A depends on the tone of endogenous orexin known to fluctuate during the day-night cycle. In fact, in slices prepared during the active period of the rats, when endogenous orexin levels are high, NMDAR-currents were not affected by exogenously applied ox-A. The inhibitory effect of ox-A was, however, reverted when interfering with the orexinergic system through intraperitoneal injections of almorexant, a dual orexin receptor antagonist, during the active phase prior to slice preparation. This thesis work suggests that the orexinergic system regulates NMDAR-dependent information flow through select hippocampal pathways depending on the time-of-day. The specific orexinergic modulation of NMDARs at MFs dampens the excitability of the hippocampal circuit and could impede the mechanisms related to memory formation, possibly also following extended periods of waking. -- La capacité d'apprentissage et de mémorisation est une des fonctions les plus intrigantes de notre cerveau. Il a été montré qu'elles requièrent l'activation des récepteurs NMDA (NMDARs). Ces entités moléculaires sont présentes au niveau de la densité post-synaptique des synapses excitatrices et leur fonction est étroitement contrôlée par l'action de nombreux modulateurs au niveau extracellulaire, intracellulaire et membranaire de ces récepteurs. Une grande partie de la modulation intracellulaire s'effectue via l'action de récepteurs couplés aux protéines G (GPCRs). Grace à leurs cascades intracellulaires typiquement impliquant des kinases et des phosphatases, les GPCRs favorisent l'activation ou l'inhibition des NMDARs, contrôlant ainsi leur perméabilité mais aussi leur mouvement à la synapse. Les GPCRs sont impliquées dans de nombreuses fonctions cérébrales telles que la cognition, la mémoire ainsi que la capacité d'apprentissage c'est pour cela que leurs effets sur les NMDARs sont très étudiés. Le système orexinergique fait intervenir ces GPCRs et est connu par son rôle dans la régulation de fonctions physiologiques telles que l'éveil, la prise alimentaire, la récompense ainsi que d'autres fonctions du système nerveux autonome. De plus, ce système est impliqué dans la régulation de tâches cognitives liées à l'hippocampe. Bien que les fibres et les récepteurs à l'orexine soient présents dans l'hippocampe, leur mécanisme d'action sur les cellules et les synapses de l'hippocampe n'a pas encore été élucidé. Durant ma thèse, je me suis intéressée aux effets de l'orexine sur la transmission synaptique excitatrice en utilisant la méthode d'enregistrement en patch-clamp en configuration cellule entière sur des tranches aiguës d'hippocampes de rats. J'ai observé que l'application exogène d'orexine A d'une part inhibe fortement les courants synaptiques dépendants de l'activation des NMDARs au niveau de la synapse entre les fibres moussues et CA3 via l'activation post-synaptique des orexine récepteurs 2 mais d'autre part n'inhibe que de façon mineure la synapse entre les collatérales de Schaffer et CAI et n'affecte pas les autres synapses impliquant CA3. J'ai également démontré que la sensibilité des NMDARs à l'orexine A dépend de sa concentration endogène qui fluctue durant le cycle éveil-sommeil. En effet, lorsque les coupes d'hippocampes sont préparées durant la période active de l'animal correspondant à un niveau endogène d'orexine élevé, l'application exogène d'orexine A n'a aucun effet sur les courants dépendants de l'activation des NMDARs. Cependant, l'injection dans le péritoine, durant la phase active de l'animal, d'un antagoniste des orexine récepteurs, l'almorexant, va supprimer l'effet inhibiteur de l'orexine A. Les résultats de ma thèse suggèrent donc que le système orexinergique module les informations véhiculées par les NMDARs via des voies de signalisation sélectives de l'hippocampe en fonction du moment de la journée. La modulation orexinergique des NMDARs au niveau des fibres moussues diminue ainsi l'excitabilité du circuit hippocampal et pourrait entraver les mécanismes liés à la formation de la mémoire, potentiellement après de longues périodes d'éveil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alterations to brain homeostasis during development are reflected in the neurochemical profile determined noninvasively by (1)H magnetic resonance spectroscopy. We determined longitudinal biochemical modifications in the cortex, hippocampus, and striatum of C57BL/6 mice aged between 3 and 24 months . The regional neurochemical profile evolution indicated that aging induces general modifications of neurotransmission processes (reduced GABA and glutamate), primary energy metabolism (altered glucose, alanine, and lactate) and turnover of lipid membranes (modification of choline-containing compounds and phosphorylethanolamine), which are all probably involved in the frequently observed age-related cognitive decline. Interestingly, the neurochemical profile was different in male and female mice, particularly in the levels of taurine that may be under the control of estrogen receptors. These neurochemical profiles constitute the basal concentrations in cortex, hippocampus, and striatum of healthy aging male and female mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A loss in the necessary amount of sleep alters expression of genes and proteins implicated in brain plasticity, but key proteins that render neuronal circuits sensitive to sleep disturbance are unknown. We show that mild (4-6 h) sleep deprivation (SD) selectively augmented the number of NR2A subunits of NMDA receptors on postsynaptic densities of adult mouse CA1 synapses. The greater synaptic NR2A content facilitated induction of CA3-CA1 long-term depression in the theta frequency stimulation range and augmented the synaptic modification threshold. NR2A-knock-out mice maintained behavioral response to SD, including compensatory increase in post-deprivation resting time, but hippocampal synaptic plasticity was insensitive to sleep loss. After SD, the balance between synaptically activated and slowly recruited NMDA receptor pools during temporal summation was disrupted. Together, these results indicate that NR2A is obligatory for the consequences of sleep loss on hippocampal synaptic plasticity. These findings could advance pharmacological strategies aiming to sustain hippocampal function during sleep restriction.