28 resultados para Epg Data Reduction
Resumo:
The pharmacokinetics (PK) of efavirenz (EFV) is characterized by marked interpatient variability that correlates with its pharmacodynamics (PD). In vitro-in vivo extrapolation (IVIVE) is a "bottom-up" approach that combines drug data with system information to predict PK and PD. The aim of this study was to simulate EFV PK and PD after dose reductions. At the standard dose, the simulated probability was 80% for viral suppression and 28% for central nervous system (CNS) toxicity. After a dose reduction to 400 mg, the probabilities of viral suppression were reduced to 69, 75, and 82%, and those of CNS toxicity were 21, 24, and 29% for the 516 GG, 516 GT, and 516 TT genotypes, respectively. With reduction of the dose to 200 mg, the probabilities of viral suppression decreased to 54, 62, and 72% and those of CNS toxicity decreased to 13, 18, and 20% for the 516 GG, 516 GT, and 516 TT genotypes, respectively. These findings indicate how dose reductions might be applied in patients with favorable genetic characteristics.
Resumo:
BACKGROUND: Studies on hexaminolevulinate (HAL) cystoscopy report improved detection of bladder tumours. However, recent meta-analyses report conflicting effects on recurrence. OBJECTIVE: To assess available clinical data for blue light (BL) HAL cystoscopy on the detection of Ta/T1 and carcinoma in situ (CIS) tumours, and on tumour recurrence. DESIGN, SETTING, AND PARTICIPANTS: This meta-analysis reviewed raw data from prospective studies on 1345 patients with known or suspected non-muscle-invasive bladder cancer (NMIBC). INTERVENTION: A single application of HAL cystoscopy was used as an adjunct to white light (WL) cystoscopy. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We studied the detection of NMIBC (intention to treat [ITT]: n=831; six studies) and recurrence (per protocol: n=634; three studies) up to 1 yr. DerSimonian and Laird's random-effects model was used to obtain pooled relative risks (RRs) and associated 95% confidence intervals (CIs) for outcomes for detection. RESULTS AND LIMITATIONS: BL cystoscopy detected significantly more Ta tumours (14.7%; p<0.001; odds ratio [OR]: 4.898; 95% CI, 1.937-12.390) and CIS lesions (40.8%; p<0.001; OR: 12.372; 95% CI, 6.343-24.133) than WL. There were 24.9% patients with at least one additional Ta/T1 tumour seen with BL (p<0.001), significant also in patients with primary (20.7%; p<0.001) and recurrent cancer (27.7%; p<0.001), and in patients at high risk (27.0%; p<0.001) and intermediate risk (35.7%; p=0.004). In 26.7% of patients, CIS was detected only by BL (p<0.001) and was also significant in patients with primary (28.0%; p<0.001) and recurrent cancer (25.0%; p<0.001). Recurrence rates up to 12 mo were significantly lower overall with BL, 34.5% versus 45.4% (p=0.006; RR: 0.761 [0.627-0.924]), and lower in patients with T1 or CIS (p=0.052; RR: 0.696 [0.482-1.003]), Ta (p=0.040; RR: 0.804 [0.653-0.991]), and in high-risk (p=0.050) and low-risk (p=0.029) subgroups. Some subgroups had too few patients to allow statistically meaningful analysis. Heterogeneity was minimised by the statistical analysis method used. CONCLUSIONS: This meta-analysis confirms that HAL BL cystoscopy significantly improves the detection of bladder tumours leading to a reduction of recurrence at 9-12 mo. The benefit is independent of the level of risk and is evident in patients with Ta, T1, CIS, primary, and recurrent cancer.
Resumo:
Mississippi Tialley-type zinc-lead deposits and ore occurrences in the San Vicente belt are hosted in dolostones of the eastern Upper Triassic to Lower Jurassic Pucara basin, central Peru. Combined inorganic and organic geochemical data from 22 sites, including the main San Vicente deposit, minor ore occurrences, and barren localities, provide better understanding of fluid pathways and composition, ore precipitation mechanisms, Eh-pH changes during mineralization, and relationships between organic matter and ore formation. Ore-stage dark replacement dolomite and white sparry dolomite are Fe and rare earth element (REE) depleted, and Mn enriched, compared to the host dolomite. In the main deposit, they display significant negative Ce and probably Eu anomalies. Mixing of an incoming hot, slightly oxidizing, acidic brine (H2CO3 being the dominant dissolved carbon species), probably poor in REE and Fe, with local intraformational, alkaline, reducing waters explains the overall carbon and oxygen isotope variation and the distributions of REE and other trace elements in the different hydrothermal carbonate generations. The incoming ore fluid flowed through major aquifers, probably basal basin detrital units, with limited interaction with the carbonate host rocks. The hydrothermal carbonates show a strong regional chemical homogeneity, indicating access of the ore fluids by interconnected channelways near the ore occurrences. Negative Ce anomalies in the main deposit, that are absent at the district scale, indicate local ore-fluid chemical differences. Oxidation of both migrated and indigenous hydrocarbons by the incoming fluid provided the local reducing conditions necessary for sulfate reduction to H2S, pyrobitumen precipitation, and reduction of Eu3+ to Eu2+. Fe-Mn covariations, combined with the REE contents of the hydrothermal carbonates, are consistent with the mineralizing system shifting from reducing/rock-dominated to oxidizing/fluid-dominated conditions following ore deposition. Sulfate and sulfide sulfur isotopes support sulfide origin from evaporite-derived sulfate by thermochemical organic reduction; further evidence includes the presence of C-13-depleted calcite cements (similar to-12 parts per thousand delta(13)C) as sulfate pseudomorphs, elemental sulfur, altered organic matter in the host dolomite, and isotopically heavier, late, solid bitumen. Significant alteration of the indigenous and extrinsic hydrocarbons, with absent bacterial membrane biomarkers (hopanes) is observed. The light delta(34)S of sulfides from small mines and occurrences compared to the main deposit reflect a local contribution of isotopically light sulfur, evidence of local differences in the ore-fluid chemistry.
Resumo:
Despite a low positive predictive value, diagnostic tests such as complete blood count (CBC) and C-reactive protein (CRP) are commonly used to evaluate whether infants with risk factors for early-onset neonatal sepsis (EOS) should be treated with antibiotics. We investigated the impact of implementing a protocol aiming at reducing the number of diagnostic tests in infants with risk factors for EOS in order to compare the diagnostic performance of repeated clinical examination with CBC and CRP measurement. The primary outcome was the time between birth and the first dose of antibiotics in infants treated for suspected EOS. Among the 11,503 infants born at ≥35 weeks during the study period, 222 were treated with antibiotics for suspected EOS. The proportion of infants receiving antibiotics for suspected EOS was 2.1% and 1.7% before and after the change of protocol (p = 0.09). Reduction of diagnostic tests was associated with earlier antibiotic treatment in infants treated for suspected EOS (hazard ratio 1.58; 95% confidence interval [CI] 1.20-2.07; p <0.001), and in infants with neonatal infection (hazard ratio 2.20; 95% CI 1.19-4.06; p = 0.01). There was no difference in the duration of hospital stay nor in the proportion of infants requiring respiratory or cardiovascular support before and after the change of protocol. Reduction of diagnostic tests such as CBC and CRP does not delay initiation of antibiotic treatment in infants with suspected EOS. The importance of clinical examination in infants with risk factors for EOS should be emphasised.
Resumo:
The ground-penetrating radar (GPR) geophysical method has the potential to provide valuable information on the hydraulic properties of the vadose zone because of its strong sensitivity to soil water content. In particular, recent evidence has suggested that the stochastic inversion of crosshole GPR traveltime data can allow for a significant reduction in uncertainty regarding subsurface van Genuchten-Mualem (VGM) parameters. Much of the previous work on the stochastic estimation of VGM parameters from crosshole GPR data has considered the case of steady-state infiltration conditions, which represent only a small fraction of practically relevant scenarios. We explored in detail the dynamic infiltration case, specifically examining to what extent time-lapse crosshole GPR traveltimes, measured during a forced infiltration experiment at the Arreneas field site in Denmark, could help to quantify VGM parameters and their uncertainties in a layered medium, as well as the corresponding soil hydraulic properties. We used a Bayesian Markov-chain-Monte-Carlo inversion approach. We first explored the advantages and limitations of this approach with regard to a realistic synthetic example before applying it to field measurements. In our analysis, we also considered different degrees of prior information. Our findings indicate that the stochastic inversion of the time-lapse GPR data does indeed allow for a substantial refinement in the inferred posterior VGM parameter distributions compared with the corresponding priors, which in turn significantly improves knowledge of soil hydraulic properties. Overall, the results obtained clearly demonstrate the value of the information contained in time-lapse GPR data for characterizing vadose zone dynamics.
Resumo:
AIM: To assess the predictors of a significant decrease or cessation of substance use (SU) in a treated epidemiological cohort of first-episode psychosis (FEP) patients. METHOD: Participants were FEP patients of the Early Psychosis Prevention and Intervention Centre in Australia. Patients' medical files were reviewed using a standardized file audit. Data on 432 patients with FEP and baseline co-morbid substance use disorder (SUD) were available for analysis. Predictors of reduction/cessation of SU at follow up were examined using logistic regression analyses. RESULTS: In univariate analyses, a reduction/cessation of SU was predicted by baseline measures reflecting higher education, employment, accommodation with others, cannabis use disorder (CUD) only (rather than poly-SUDs), better global functioning and better premorbid social and occupational functioning, later age at onset of psychosis, and a diagnosis of non-affective psychosis. In multivariate analysis, CUD alone and better premorbid social and occupational functioning remained significant predictors. CONCLUSIONS: Addressing SUDs and social and occupational goals in people with FEP may offer opportunities to prevent SUDs becoming more severe or entrenched. Further longitudinal research on recovery from SU and FEP is needed to disentangle directions of influence and identify key targets for intervention.
Resumo:
The biosynthetic genes pchDCBA and pchEF, which are known to be required for the formation of the siderophore pyochelin and its precursors salicylate and dihydroaeruginoate (Dha), are clustered with the pchR regulatory gene on the chromosome of Pseudomonas aeruginosa. The 4.6-kb region located downstream of the pchEF genes was found to contain three additional, contiguous genes, pchG, pchH, and pchI, probably forming a pchEFGHI operon. The deduced amino acid sequences of PchH and PchI are similar to those of ATP binding cassette transport proteins with an export function. PchG is a homolog of the Yersinia pestis and Y. enterocolitica proteins YbtU and Irp3, which are involved in the biosynthesis of yersiniabactin. A null mutation in pchG abolished pyochelin formation, whereas mutations in pchH and pchI did not affect the amounts of salicylate, Dha, and pyochelin produced. The pyochelin biosynthetic genes were expressed from a vector promoter, uncoupling them from Fur-mediated repression by iron and PchR-dependent induction by pyochelin. In a P. aeruginosa mutant lacking the entire pyochelin biosynthetic gene cluster, the expressed pchDCBA and pchEFG genes were sufficient for salicylate, Dha, and pyochelin production. Pyochelin formation was also obtained in the heterologous host Escherichia coli expressing pchDCBA and pchEFG together with the E. coli entD gene, which provides a phosphopantetheinyl transferase necessary for PchE and PchF activation. The PchG protein was purified and used in combination with PchD and phosphopantetheinylated PchE and PchF in vitro to produce pyochelin from salicylate, L-cysteine, ATP, NADPH, and S-adenosylmethionine. Based on this assay, a reductase function was attributed to PchG. In summary, this study completes the identification of the biosynthetic genes required for pyochelin formation from chorismate in P. aeruginosa.
Resumo:
Breathing-induced bulk motion of the myocardium during data acquisition may cause severe image artifacts in coronary magnetic resonance angiography (MRA). Current motion compensation strategies include breath-holding or free-breathing MR navigator gating and tracking techniques. Navigator-based techniques have been further refined by the applications of sophisticated 2D k-space reordering techniques. A further improvement in image quality and a reduction of relative scanning duration may be expected from a 3D k-space reordering scheme. Therefore, a 3D k-space reordered acquisition scheme including a 3D navigator gated and corrected segmented k-space gradient echo imaging sequence for coronary MRA was implemented. This new zonal motion-adapted acquisition and reordering technique (ZMART) was developed on the basis of a numerical simulation of the Bloch equations. The technique was implemented on a commercial 1.5T MR system, and first phantom and in vivo experiments were performed. Consistent with the results of the theoretical findings, the results obtained in the phantom studies demonstrate a significant reduction of motion artifacts when compared to conventional (non-k-space reordered) gating techniques. Preliminary in vivo findings also compare favorably with the phantom experiments and theoretical considerations. Magn Reson Med 45:645-652, 2001.
Resumo:
Background: Phacoemulsification is known to induce postoperative intraocular pressure (IOP) reduction, the degree of which varies according to glaucoma subtype and race. The authors set out to investigate the effect of cataract surgery on IOP, in a Swiss Caucasian population, and identify ocular predictive factors. Patients and Methods: 234 consecutive cases of 188 patients undergoing phacoemulsification between January 2011 and December 2012 were retrospectively reviewed and data collected. Exclusion criteria included acute angle closure, malignant glaucoma and pre-existing or subsequent glaucoma surgery. Pre- and post-operative visual acuity, IOP, gonioscopic findings, glaucoma medications, and laser treatments were recorded for eligible eyes. All eyes received the same postoperative regimen. Using multivariate analysis the predictive power of preoperative IOP, iridocorneal angle width, axial length on IOP reduction following phacoemulsification at months 3, 6 and 12 postoperatively were assessed. Eyes with narrow angles were compared against those with open angles. Results: 172 eyes of 121 patients met the inclusion criteria; mean age was 70.3 years (SD ± 10.7 years), with 77 males. Preoperatively median IOP was 16 mmHg (range 9-32 mmHg), mean number of glaucoma medications was 1.2 (SD ± 1.1), median visual acuity was 0.28 LogMAR (range 0-2.3LogMar). At 3 months post-operatively mean IOP decreased to 14 mmHg (p < 0.01) and remained statistically significantly reduced until 12 months, mean number of glaucoma medications was reduced to 1.0 and mean Snellen visual acuity increased to 0.8. Multivariate analysis revealed that pre-operative IOP and iridocorneal angle width (at 3 months) were significant predictive indicators of IOP reduction. At 12 months, IOP reduction was similar between open and narrow angle groups and total IOP reduction was no longer statistically significant. No intraoperative complications were recorded. Conclusions: Intraocular pressure reduction following phacoemulsification was greatest during the very early post-operative period, particularly in narrow angle patients. By one year, angle size was no longer predictive of IOP lowering, however pre-operative IOP and number of anti-glaucoma medications remained correlated with total IOP reduction.
Resumo:
PURPOSE: To combine weighted iterative reconstruction with self-navigated free-breathing coronary magnetic resonance angiography for retrospective reduction of respiratory motion artifacts. METHODS: One-dimensional self-navigation was improved for robust respiratory motion detection and the consistency of the acquired data was estimated on the detected motion. Based on the data consistency, the data fidelity term of iterative reconstruction was weighted to reduce the effects of respiratory motion. In vivo experiments were performed in 14 healthy volunteers and the resulting image quality of the proposed method was compared to a navigator-gated reference in terms of acquisition time, vessel length, and sharpness. RESULT: Although the sampling pattern of the proposed method contained 60% more samples with respect to the reference, the scan efficiency was improved from 39.5 ± 10.1% to 55.1 ± 9.1%. The improved self-navigation showed a high correlation to the standard navigator signal and the described weighting efficiently reduced respiratory motion artifacts. Overall, the average image quality of the proposed method was comparable to the navigator-gated reference. CONCLUSION: Self-navigated coronary magnetic resonance angiography was successfully combined with weighted iterative reconstruction to reduce the total acquisition time and efficiently suppress respiratory motion artifacts. The simplicity of the experimental setup and the promising image quality are encouraging toward future clinical evaluation. Magn Reson Med 73:1885-1895, 2015. © 2014 Wiley Periodicals, Inc.
Resumo:
The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous EEG-fMRI studies, but the concurrent increases in artifact contamination can strongly compromise EEG data quality. In the present study, we focus on EEG artifacts created by head motion in the static B0 field. A novel approach for motion artifact detection is proposed, based on a simple modification of a commercial EEG cap, in which four electrodes are non-permanently adapted to record only magnetic induction effects. Simultaneous EEG-fMRI data were acquired with this setup, at 7T, from healthy volunteers undergoing a reversing-checkerboard visual stimulation paradigm. Data analysis assisted by the motion sensors revealed that, after gradient artifact correction, EEG signal variance was largely dominated by pulse artifacts (81-93%), but contributions from spontaneous motion (4-13%) were still comparable to or even larger than those of actual neuronal activity (3-9%). Multiple approaches were tested to determine the most effective procedure for denoising EEG data incorporating motion sensor information. Optimal results were obtained by applying an initial pulse artifact correction step (AAS-based), followed by motion artifact correction (based on the motion sensors) and ICA denoising. On average, motion artifact correction (after AAS) yielded a 61% reduction in signal power and a 62% increase in VEP trial-by-trial consistency. Combined with ICA, these improvements rose to a 74% power reduction and an 86% increase in trial consistency. Overall, the improvements achieved were well appreciable at single-subject and single-trial levels, and set an encouraging quality mark for simultaneous EEG-fMRI at ultra-high field.
Resumo:
An important aspect of immune monitoring for vaccine development, clinical trials, and research is the detection, measurement, and comparison of antigen-specific T-cells from subject samples under different conditions. Antigen-specific T-cells compose a very small fraction of total T-cells. Developments in cytometry technology over the past five years have enabled the measurement of single-cells in a multivariate and high-throughput manner. This growth in both dimensionality and quantity of data continues to pose a challenge for effective identification and visualization of rare cell subsets, such as antigen-specific T-cells. Dimension reduction and feature extraction play pivotal role in both identifying and visualizing cell populations of interest in large, multi-dimensional cytometry datasets. However, the automated identification and visualization of rare, high-dimensional cell subsets remains challenging. Here we demonstrate how a systematic and integrated approach combining targeted feature extraction with dimension reduction can be used to identify and visualize biological differences in rare, antigen-specific cell populations. By using OpenCyto to perform semi-automated gating and features extraction of flow cytometry data, followed by dimensionality reduction with t-SNE we are able to identify polyfunctional subpopulations of antigen-specific T-cells and visualize treatment-specific differences between them.
Resumo:
Despite the proven ability of immunization to reduce Helicobacter infection in mouse models, the precise mechanism of protection has remained elusive. In this study, we evaluated the role of inflammatory monocytes in the vaccine-induced reduction of Helicobacter felis infection. We first showed by using flow cytometric analysis that Ly6C(low) major histocompatibility complex class II-positive chemokine receptor type 2 (CCR2)-positive CD64(+) inflammatory monocytes accumulate in the stomach mucosa during the vaccine-induced reduction of H. felis infection. To determine whether inflammatory monocytes played a role in the protection, these cells were depleted with anti-CCR2 depleting antibodies. Indeed, depletion of inflammatory monocytes was associated with an impaired vaccine-induced reduction of H. felis infection on day 5 postinfection. To determine whether inflammatory monocytes had a direct or indirect role, we studied their antimicrobial activities. We observed that inflammatory monocytes produced tumor necrosis factor alpha and inducible nitric oxide synthase (iNOS), two major antimicrobial factors. Lastly, by using a Helicobacter in vitro killing assay, we showed that mouse inflammatory monocytes and activated human monocytes killed H. pylori in an iNOS-dependent manner. Collectively, these data show that inflammatory monocytes play a direct role in the immunization-induced reduction of H. felis infection from the gastric mucosa.