19 resultados para Energy systems analysis
Resumo:
Gait analysis methods to estimate spatiotemporal measures, based on two, three or four gyroscopes attached on lower limbs have been discussed in the literature. The most common approach to reduce the number of sensing units is to simplify the underlying biomechanical gait model. In this study, we propose a novel method based on prediction of movements of thighs from movements of shanks. Datasets from three previous studies were used. Data from the first study (ten healthy subjects and ten with Parkinson's disease) were used to develop and calibrate a system with only two gyroscopes attached on shanks. Data from two other studies (36 subjects with hip replacement, seven subjects with coxarthrosis, and eight control subjects) were used for comparison with the other methods and for assessment of error compared to a motion capture system. Results show that the error of estimation of stride length compared to motion capture with the system with four gyroscopes and our new method based on two gyroscopes was close ( -0.8 ±6.6 versus 3.8 ±6.6 cm). An alternative with three sensing units did not show better results (error: -0.2 ±8.4 cm). Finally, a fourth that also used two units but with a simpler gait model had the highest bias compared to the reference (error: -25.6 ±7.6 cm). We concluded that it is feasible to estimate movements of thighs from movements of shanks to reduce number of needed sensing units from 4 to 2 in context of ambulatory gait analysis.
Resumo:
Sustainable resource use is one of the most important environmental issues of our times. It is closely related to discussions on the 'peaking' of various natural resources serving as energy sources, agricultural nutrients, or metals indispensable in high-technology applications. Although the peaking theory remains controversial, it is commonly recognized that a more sustainable use of resources would alleviate negative environmental impacts related to resource use. In this thesis, sustainable resource use is analysed from a practical standpoint, through several different case studies. Four of these case studies relate to resource metabolism in the Canton of Geneva in Switzerland: the aim was to model the evolution of chosen resource stocks and flows in the coming decades. The studied resources were copper (a bulk metal), phosphorus (a vital agricultural nutrient), and wood (a renewable resource). In addition, the case of lithium (a critical metal) was analysed briefly in a qualitative manner and in an electric mobility perspective. In addition to the Geneva case studies, this thesis includes a case study on the sustainability of space life support systems. Space life support systems are systems whose aim is to provide the crew of a spacecraft with the necessary metabolic consumables over the course of a mission. Sustainability was again analysed from a resource use perspective. In this case study, the functioning of two different types of life support systems, ARES and BIORAT, were evaluated and compared; these systems represent, respectively, physico-chemical and biological life support systems. Space life support systems could in fact be used as a kind of 'laboratory of sustainability' given that they represent closed and relatively simple systems compared to complex and open terrestrial systems such as the Canton of Geneva. The chosen analysis method used in the Geneva case studies was dynamic material flow analysis: dynamic material flow models were constructed for the resources copper, phosphorus, and wood. Besides a baseline scenario, various alternative scenarios (notably involving increased recycling) were also examined. In the case of space life support systems, the methodology of material flow analysis was also employed, but as the data available on the dynamic behaviour of the systems was insufficient, only static simulations could be performed. The results of the case studies in the Canton of Geneva show the following: were resource use to follow population growth, resource consumption would be multiplied by nearly 1.2 by 2030 and by 1.5 by 2080. A complete transition to electric mobility would be expected to only slightly (+5%) increase the copper consumption per capita while the lithium demand in cars would increase 350 fold. For example, phosphorus imports could be decreased by recycling sewage sludge or human urine; however, the health and environmental impacts of these options have yet to be studied. Increasing the wood production in the Canton would not significantly decrease the dependence on wood imports as the Canton's production represents only 5% of total consumption. In the comparison of space life support systems ARES and BIORAT, BIORAT outperforms ARES in resource use but not in energy use. However, as the systems are dimensioned very differently, it remains questionable whether they can be compared outright. In conclusion, the use of dynamic material flow analysis can provide useful information for policy makers and strategic decision-making; however, uncertainty in reference data greatly influences the precision of the results. Space life support systems constitute an extreme case of resource-using systems; nevertheless, it is not clear how their example could be of immediate use to terrestrial systems.
Resumo:
OBJECTIVE: To evaluate the variability of bond strength test results of adhesive systems (AS) and to correlate the results with clinical parameters of clinical studies investigating cervical restorations. MATERIALS AND METHODS: Regarding the clinical studies, the internal database which had previously been used for a meta-analysis on cervical restorations was updated with clinical studies published between 2008 and 2012 by searching the PubMed and SCOPUS databases. PubMed and the International Association for Dental Research abstracts online were searched for laboratory studies on microtensile, macrotensile and macroshear bond strength tests. The inclusion criteria were (1) dentin, (2) testing of at least four adhesive systems, (3) same diameter of composite and (4) 24h of water storage prior to testing. The clinical outcome variables were retention loss, marginal discoloration, detectable margins, and a clinical index comprising the three parameters by weighing them. Linear mixed models which included a random study effect were calculated for both, the laboratory and the clinical studies. The variability was assessed by calculating a ratio of variances, dividing the variance among the estimated bonding effects obtained in the linear mixed models by the sum of all variance components estimated in these models. RESULTS: Thirty-two laboratory studies fulfilled the inclusion criteria comprising 183 experiments. Of those, 86 used the microtensile test evaluating 22 adhesive systems (AS). Twenty-seven used the macrotensile test with 17 AS, and 70 used the macroshear test with 24 AS. For 28 AS the results from clinical studies were available. Microtensile and macrotensile (Spearman rho=0.66, p=0.007) were moderately correlated and also microtensile and macroshear (Spearman rho=0.51, p=0.03) but not macroshear and macrotensile (Spearman rho=0.34, p=0.22). The effect of the adhesive system was significant for microtensile and macroshear (p<0.001) but not for macrotensile. The effect of the adhesive system could explain 36% of the variability of the microtensile test, 27% of the macrotensile and 33% of the macroshear test. For the clinical trials, about 49% of the variability of retained restorations could be explained by the adhesive system. With respect to the correlation between bond strength tests and clinical parameters, only a moderate correlation between micro- and macrotensile test results and marginal discoloration was demonstrated. However, no correlation between these tests and a retention loss or marginal integrity was shown. The correlation improved when more studies were included compared to assessing only one study. SIGNIFICANCE: The high variability of bond strength test results highlights the need to establish individual acceptance levels for a given test institute. The weak correlation of bond-strength test results with clinical parameters leads to the conclusion that one should not rely solely on bond strength tests to predict the clinical performance of an adhesive system but one should conduct other laboratory tests like tests on the marginal adaptation of fillings in extracted teeth and the retention loss of restorations in non-retentive cavities after artificial aging.