29 resultados para Electro-reológicos
Resumo:
The treatment of some cancer patients has shifted from traditional, non-specific cytotoxic chemotherapy to chronic treatment with molecular targeted therapies. Imatinib mesylate, a selective inhibitor of tyrosine kinases (TKIs) is the most prominent example of this new era and has opened the way to the development of several additional TKIs, including sunitinib, nilotinib, dasatinib, sorafenib and lapatinib, in the treatment of various hematological malignancies and solid tumors. All these agents are characterized by an important inter-individual pharmacokinetic variability, are at risk for drug interactions, and are not devoid of toxicity. Additionally, they are administered for prolonged periods, anticipating the careful monitoring of their plasma exposure via Therapeutic Drug Monitoring (TDM) to be an important component of patients' follow-up. We have developed a liquid chromatography-tandem mass spectrometry method (LC-MS/MS) requiring 100 microL of plasma for the simultaneous determination of the six major TKIs currently in use. Plasma is purified by protein precipitation and the supernatant is diluted in ammonium formate 20 mM (pH 4.0) 1:2. Reverse-phase chromatographic separation of TKIs is obtained using a gradient elution of 20 mM ammonium formate pH 2.2 and acetonitrile containing 1% formic acid, followed by rinsing and re-equilibration to the initial solvent composition up to 20 min. Analyte quantification, using matrix-matched calibration samples, is performed by electro-spray ionization-triple quadrupole mass spectrometry by selected reaction monitoring detection using the positive mode. The method was validated according to FDA recommendations, including assessment of extraction yield, matrix effects variability (<9.6%), overall process efficiency (87.1-104.2%), as well as TKIs short- and long-term stability in plasma. The method is precise (inter-day CV%: 1.3-9.4%), accurate (-9.2 to +9.9%) and sensitive (lower limits of quantification comprised between 1 and 10 ng/mL). This is the first broad-range LC-MS/MS assay covering the major currently in-use TKIs. It is an improvement over previous methods in terms of convenience (a single extraction procedure for six major TKIs, reducing significantly the analytical time), sensitivity, selectivity and throughput. It may contribute to filling the current knowledge gaps in the pharmacokinetics/pharmacodynamics relationships of the latest TKIs developed after imatinib and better define their therapeutic ranges in different patient populations in order to evaluate whether a systematic TDM-guided dose adjustment of these anticancer drugs could contribute to minimize the risk of major adverse reactions and to increase the probability of efficient, long lasting, therapeutic response.
Resumo:
BACKGROUND: We sought to investigate the relationship between infarct and dyssynchrony post- myocardial infarct (MI), in a porcine model. Mechanical dyssynchrony post-MI is associated with left ventricular (LV) remodeling and increased mortality. METHODS: Cine, gadolinium-contrast, and tagged cardiovascular magnetic resonance (CMR) were performed pre-MI, 9 ± 2 days (early post-MI), and 33 ± 10 days (late post-MI) post-MI in 6 pigs to characterize cardiac morphology, location and extent of MI, and regional mechanics. LV mechanics were assessed by circumferential strain (eC). Electro-anatomic mapping (EAM) was performed within 24 hrs of CMR and prior to sacrifice. RESULTS: Mean infarct size was 21 ± 4% of LV volume with evidence of post-MI remodeling. Global eC significantly decreased post MI (-27 ± 1.6% vs. -18 ± 2.5% (early) and -17 ± 2.7% (late), p < 0.0001) with no significant change in peri-MI and MI segments between early and late time-points. Time to peak strain (TTP) was significantly longer in MI, compared to normal and peri-MI segments, both early (440 ± 40 ms vs. 329 ± 40 ms and 332 ± 36 ms, respectively; p = 0.0002) and late post-MI (442 ± 63 ms vs. 321 ± 40 ms and 355 ± 61 ms, respectively; p = 0.012). The standard deviation of TTP in 16 segments (SD16) significantly increased post-MI: 28 ± 7 ms to 50 ± 10 ms (early, p = 0.012) to 54 ± 19 ms (late, p = 0.004), with no change between early and late post-MI time-points (p = 0.56). TTP was not related to reduction of segmental contractility. EAM revealed late electrical activation and greatly diminished conduction velocity in the infarct (5.7 ± 2.4 cm/s), when compared to peri-infarct (18.7 ± 10.3 cm/s) and remote myocardium (39 ± 20.5 cm/s). CONCLUSIONS: Mechanical dyssynchrony occurs early after MI and is the result of delayed electrical and mechanical activation in the infarct.
Resumo:
Ablation strategies for the treatment of atrial fibrillation (AF) are associated with several potential complications. During electro-anatomic mapping of the left atrium (LA) before ablation, the ablation catheter was entrapped in the right inferior pulmonary vein (RIPV). After multiple unsuccessful gentle tractions, stronger maneuvers with rotation of the catheter slowly allowed its retrieval. Examination of the catheter showed a thin, translucent membrane covering its tip, suggesting complete stripping of a vein branch. Occlusion of the superior branch of the RIPV was confirmed by LA angiogram. During the following days, no pericardial effusion was noted, but the patient complained of light chest pain and mild hemoptysis, spontaneously resolving within 48 h. This case shows that catheter entrapment and mechanical disruption of a PV branch can be a rare potential complication of AF ablation. In this case, the outcome was spontaneously favorable and symptoms only included transient mild hemoptysis.
Resumo:
Neuron-astrocyte reciprocal communication at synapses has emerged as a novel signalling pathway in brain function. Astrocytes sense the level of synaptic activity and, in turn, influence its efficacy through the regulated release of ''glio- transmitters'' such as glutamate, ATP or D-serine. A calcium- dependent exocytosis is proposed to drive the release of gliotransmitters but its existence is still debated. To shed light onto the mechanisms controlling the storage and the release of gliotransmitters and namely D-serine, we have developed a new method for the immunoisolation of synaptobrevin 2-positive vesicles from rat cortical astrocytes in culture. The purified organelles are clear round shape vesicles of excellent purity as judged by electron microscopy. Immunoblotting analysis revealed that isolated vesicles contain most of the major proteins already described for neuron-derived vesicles. In addition, we have analyzed the content for various amino acids of these vesicles by means of chiral capillary electro- phoresis coupled to laser-induced fluorescence detection and liquid chromatography coupled to mass spectrometry. Post- embedding immunogold labelling of the rat neocortex and hippocampus further revealed the expression of D-serine and glutamate in astrocyte processes contacting excitatory sy- napses. Our results provide significant support for the existence of secretory glial vesicles storing chemical substances like D- serine and glutamate and thus point to the co-release of amino acids by exocytosis in astrocytes.
Resumo:
The kinesin spindle protein (KSP), a member of the kinesin superfamily of microtubule-based motors, plays a critical role in mitosis as it mediates centrosome separation and bipolar spindle assembly and maintenance. Inhibition of KSP function leads to cell cycle arrest at mitosis with the formation of monoastral microtubule arrays, and ultimately, to cell death. Several KSP inhibitors are currently being studied in clinical trials and provide new opportunities for the development of novel anticancer therapeutics. RNA interference (RNAi) may represent a powerful strategy to interfere with key molecular pathways involved in cancer. In this study, we have established an efficient method for intratumoral delivery of siRNA. We evaluated short interfering RNA (siRNA) duplexes targeting luciferase as surrogate marker or KSP sequence. To examine the potential feasibility of RNAi therapy, the siRNA was transfected into pre-established lesions by means of intratumor electro-transfer of RNA therapeutics (IERT). This technology allowed cell permeation of the nucleic acids and to efficiently knock down gene expression, albeit transiently. The KSP-specific siRNA drastically reduced outgrowth of subcutaneous melanoma and ovarian cancer lesions. Our results show that intratumoral electro-transfer of siRNA is feasible and KSP-specific siRNA may provide a novel strategy for therapeutic intervention. J. Cell. Physiol. 228: 58-64, 2013. © 2012 Wiley Periodicals, Inc.
Resumo:
Introduction: Oseltamivir phosphate (OP), the prodrug of oseltamivir carboxylate (OC; active metabolite), is marketed since 10 years for the treatment of seasonal influenza flu. It has recently received renewed attention because of the threat of avian flu H5N1 in 2006-7 and the 2009-10 A/H1N1 pandemic. However, relatively few studies have been published on OP and OC clinical pharmacokinetics. The disposition of OC and the dosage adaptation of OP in specific populations, such as young children or patients undergoing extrarenal epuration, have also received poor attention. An analytical method was thus developed to assess OP and OC plasma concentrations in patients receiving OP and presenting with comorbidities or requiring intensive care. Methods: A high performance liquid chromatography coupled to tandem mass spectrometry method (HPLC-MS/MS) requiring 100-µL aliquot of plasma for quantification within 6 min of OP and OC was developed. A combination of protein precipitation with acetonitrile, followed by dilution of supernant in suitable buffered solvent was used as an extraction procedure. After reverse phase chromatographic separation, quantification was performed by electro-spray ionization-triple quadrupole mass spectrometry. Deuterated isotopic compounds of OP and OC were used as internal standards. Results: The method is sensitive (lower limit of quantification: 5 ng/mL for OP and OC), accurate (intra-/inter-assay bias for OP and OC: 8.5%/5.5% and 3.7/0.7%, respectively) and precise (intra-/inter-assay CV%: 5.2%/6.5% and 6.3%/9.2%, respectively) over the clinically relevant concentration range (upper limits of quantification 5000 ng/mL). Of importance, OP, as in other previous reports, was found not to be stable ex vivo in plasma on standard anticoagulants (i.e. EDTA, heparin or citrate). This poor stability of OP has been prevented by collecting blood samples on commercial fluoride/oxalate tubes. Conclusions: This new simple, rapid and robust HPLC-MS/MS assay for quantification of OP and OC plasma concentrations offers an efficient tool for concentration monitoring of OC. Its exposure can probably be controlled with sufficient accuracy by thorough dosage adjustment according to patient characteristics (e.g. renal clearance). The usefulness of systematic therapeutic drug monitoring in patients appears therefore questionable. However, pharmacokinetic studies are still needed to extend knowledge to particular subgroups of patients or dosage regimens.
Resumo:
Introduction: Clinical examination and electroencephalography study (EEG) have been recommended to predict functional recovery in comatose survivors of cardiac arrest (CA), however their prognostic value in patients treated with induced hypothermia (IH) has not been evaluated. Hypothesis: We aimed to validate the prognostic ability of clinical examination and EEG in predicting outcome of patients with coma after CA treated with IH and sought to derive a score with high predictive value for poor functional outcome in this setting. Methods: We prospectively studied 100 consecutive comatose survivors of CA treated with IH. Repeated neurological examination and EEG were performed early after passive rewarming and off sedation. Mortality was assessed at hospital discharge, and functional outcome at 3 to 6 months with Cerebral Performance Categories (CPC), and was dichotomized as good (CPC 1-2) vs. poor (CPC 3-5). Independent predictors of outcome were identified by multivariable logistic regression and used to assess the prognostic value of a Reproducible Electro-clinical Prognosticators of Outcome Score (REPOS). Results: Patients (20/100) with good outcome had all a reactive EEG background. Incomplete recovery of brainstem reflexes, myoclonus, time to return of spontaneous circulation (ROSC) > 25 min, and unreactive EEG background were all independent predictors of death and severe disability, and were added to construct the REPOS. Using a cut-off of 0 or 1 variables for good vs. 2 to 4 for poor outcome, the REPOS had a positive predictive value of 1.00 (95% CI: 0.92-1.00), a negative predictive value of 0.43 (95% CI: 0.29-0.58) and an accuracy of 0.81 for poor functional recovery at 3 to 6 months. Conclusions: In comatose survivors of CA treated with IH, a prognostic score, including clinical and EEG examination, was highly predictive of death and poor functional outcome at 3 to 6 months. Lack of EEG background reactivity strongly predicted poor neurological recovery after CA. Our findings show that clinical and electrophysiological studies are effective in predicting long-term outcome of comatose survivors after CA and IH, and suggest that EEG improves early prognostic assessment in the setting of therapeutic cooling.
Resumo:
A hallmark of aging is the sensorimotor deficit, characterized by an increased reaction time and a reduction of motor abilities. Some mechanisms such as motor inhibition deteriorate with aging because of neuronal density alterations and modifications of connections between brain regions. These deficits may be compensated throughout a recruitment of additional areas. Studies have shown that old adults have increased difficulty in performing bimanual coordination tasks compared with young adults. In contrast, motor switching is poorly documented and is expected to engage increasing resources in the elderly. The present study examines performances and electro-cortical correlates of motor switching in young and elderly adults.
Resumo:
Contemporary psychiatry uses a variety of complementary approaches which enrich one another. In this paper, we describe the development of a brief psychodynamic approach for hospitalized patients with major depression, as well as the recent commercialization of an atypical neuroleptic depot medication. In addition, we discuss electro-convulsotherapy which, despite it has been widely and understandably condemned on the basis of its abusive and non medical application in certain political contexts, deserves objective assessment on the basis of scientific data stemming from recent research suggesting it is in some contexts a valuable tool.
Resumo:
BACKGROUND: The A3243G point mutation in mitochondrial DNA (mtDNA) is associated with MELAS (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes) and MIDD syndromes (maternally inherited diabetes and deafness). Both MELAS and MIDD patients can present with visual symptoms due to a retinopathy, sometimes before the genetic diagnosis is made. CASE PRESENTATION: Patient 1: 46 year-old woman with diabetes mellitus and hearing loss was referred for an unspecified maculopathy detected during screening evaluation for diabetic retinopathy. Visual acuity was 20/20 in both eyes. Fundus examination showed bilateral macular and peripapillary hyperpigmented/depigmented areas.Patient 2: 45 year-old woman was referred for recent vision loss in her left eye. History was remarkable for chronic fatigue, migraine and diffuse muscular pain. Visual acuity was 20/20 in her right eye and 20/30 in her left eye. Fundus exhibited several nummular perifoveal islands of retinal pigment epithelium atrophy and adjacent pale deposits in both eyes.Retinal anatomy was investigated with autofluorescence, retinal angiography and optical coherence tomography. Retinal function was assessed with automated static perimetry, full-field and multifocal electroretinography and electro-oculography. Genetic testing of mtDNA identified a point mutation at the locus 3243. CONCLUSION: Observation of RPE abnormalities in the context of suggestive systemic findings should prompt mtDNA testing.
Resumo:
L'expérience Belle, située dans le centre de recherche du KEK, au Japon, est consacrée principalement à l'étude de la violation de CP dans le système des mésons B. Elle est placée sur le collisionneur KEKB, qui produit des paires Banti-B. KEKB, l'une des deux « usines à B » actuellement en fonction, détient le record du nombre d'événements produits avec plus de 150 millions de paires. Cet échantillon permet des mesures d'une grande précision dans le domaine de la physique du méson B. C'est dans le cadre de ces mesures de précision que s'inscrit cette analyse. L'un des phénomènes remarquables de la physique des hautes énergies est la faculté qu'a l'interaction faible de coupler un méson neutre avec son anti-méson. Dans le présent travail, nous nous intéressons au méson B neutre couplé à l'anti-méson B neutre, avec une fréquence d'oscillation _md mesurable précisément. Outre la beauté de ce phénomène lui-même, une telle mesure trouve sa place dans la quête de l'origine de la violation de CP. Cette dernière n'est incluse que d'une façon peu satisfaisante dans le modèle standard des interactions électro-faibles. C'est donc la recherche de phénomènes physiques encore inexpliqués qui motive en premier lieu la collaboration Belle. Il existe déjà de nombreuses mesures de _md antérieures. Celle que nous présentons ici est cependant d'une précision encore jamais atteinte grâce, d'une part, à l'excellente performance de KEKB et, d'autre part, à une approche originale qui permet de réduire considérablement la contamination de la mesure par des événements indésirés. Cette approche fut déjà mise à profit par d'autres expériences, dans des conditions quelque peu différentes de celles de Belle. La méthode utilisée consiste à reconstruire partiellement l'un des mésons dans le canal ___D*(D0_)l_l, en n'utilisant que les informations relatives au lepton l et au pion _. L'information concernant l'autre méson de la paire Banti-B initiale n'est tirée que d'un seul lepton de haute énergie. Ainsi, l'échantillon à disposition ne souffre pas de grandes réductions dues à une reconstruction complète, tandis que la contamination due aux mésons B chargés, produits par KEKB en quantité égale aux B0, est fortement diminuée en comparaison d'une analyse inclusive. Nous obtenons finalement le résultat suivant : _md = 0.513±0.006±0.008 ps^-1, la première erreur étant l'erreur statistique et la deuxième, l'erreur systématique.<br/><br/>The Belle experiment is located in the KEK research centre (Japan) and is primarily devoted to the study of CP violation in the B meson sector. Belle is placed on the KEKB collider, one of the two currently running "B-meson factories", which produce Banti-B pairs. KEKB has created more than 150 million pairs in total, a world record for this kind of colliders. This large sample allows very precise measurements in the physics of beauty mesons. The present analysis falls within the framework of these precise measurements. One of the most remarkable phenomena in high-energy physics is the ability of weak interactions to couple a neutral meson to its anti-meson. In this work, we study the coupling of neutral B with neutral anti-B meson, which induces an oscillation of frequency _md we can measure accurately. Besides the interest of this phenomenon itself, this measurement plays an important role in the quest for the origin of CP violation. The standard model of electro-weak interactions does not include CP violation in a fully satisfactory way. The search for yet unexplained physical phenomena is, therefore, the main motivation of the Belle collaboration. Many measurements of _md have previously been performed. The present work, however, leads to a precision on _md that was never reached before. This is the result of the excellent performance of KEKB, and of an original approach that allows to considerably reduce background contamination of pertinent events. This approach was already successfully used by other collaborations, in slightly different conditions as here. The method we employed consists in the partial reconstruction of one of the B mesons through the decay channel ___D*(D0_)l_l, where only the information on the lepton l and the pion _ are used. The information on the other B meson of the initial Banti-B pair is extracted from a single high-energy lepton. The available sample of Banti-B pairs thus does not suffer from large reductions due to complete reconstruction, nor does it suffer of high charged B meson background, as in inclusive analyses. We finally obtain the following result: _md = 0.513±0.006±0.008 ps^-1, where the first error is statistical, and the second, systematical.<br/><br/>De quoi la matière est-elle constituée ? Comment tient-elle ensemble ? Ce sont là les questions auxquelles la recherche en physique des hautes énergies tente de répondre. Cette recherche est conduite à deux niveaux en constante interaction. D?une part, des modèles théoriques sont élaborés pour tenter de comprendre et de décrire les observations. Ces dernières, d?autre part, sont réalisées au moyen de collisions à haute énergie de particules élémentaires. C?est ainsi que l?on a pu mettre en évidence l?existence de quatre forces fondamentales et de 24 constituants élémentaires, classés en « quarks » et « leptons ». Il s?agit là de l?une des plus belles réussites du modèle en usage aujourd?hui, appelé « Modèle Standard ». Il est une observation fondamentale que le Modèle Standard peine cependant à expliquer, c?est la disparition quasi complète de l?anti-matière (le « négatif » de la matière). Au niveau fondamental, cela doit correspondre à une asymétrie entre particules (constituants de la matière) et antiparticules (constituants de l?anti-matière). On l?appelle l?asymétrie (ou violation) CP. Bien qu?incluse dans le Modèle Standard, cette asymétrie n?est que partiellement prise en compte, semble-t-il. En outre, son origine est inconnue. D?intenses recherches sont donc aujourd?hui entreprises pour mettre en lumière cette asymétrie. L?expérience Belle, au Japon, en est une des pionnières. Belle étudie en effet les phénomènes physiques liés à une famille de particules appelées les « mésons B », dont on sait qu?elles sont liées de près à l?asymétrie CP. C?est dans le cadre de cette recherche que se place cette thèse. Nous avons étudié une propriété remarquable du méson B neutre : l?oscillation de ce méson avec son anti-méson. Cette particule est de se désintégrer pour donner l?antiparticule associée. Il est clair que cette oscillation est rattachée à l?asymétrie CP. Nous avons ici déterminé avec une précision encore inégalée la fréquence de cette oscillation. La méthode utilisée consiste à caractériser une paire de mésons B à l?aide de leur désintégration comprenant un lepton chacun. Une plus grande précision est obtenue en recherchant également une particule appelée le pion, et qui provient de la désintégration d?un des mésons. Outre l?intérêt de ce phénomène oscillatoire en lui-même, cette mesure permet d?affiner, directement ou indirectement, le Modèle Standard. Elle pourra aussi, à terme, aider à élucider le mystère de l?asymétrie entre matière et anti-matière.
Resumo:
Although neuroimaging research has evidenced specific responses to visual food stimuli based on their nutritional quality (e.g., energy density, fat content), brain processes underlying portion size selection remain largely unexplored. We identified spatio-temporal brain dynamics in response to meal images varying in portion size during a task of ideal portion selection for prospective lunch intake and expected satiety. Brain responses to meal portions judged by the participants as 'too small', 'ideal' and 'too big' were measured by means of electro-encephalographic (EEG) recordings in 21 normal-weight women. During an early stage of meal viewing (105-145ms), data showed an incremental increase of the head-surface global electric field strength (quantified via global field power; GFP) as portion judgments ranged from 'too small' to 'too big'. Estimations of neural source activity revealed that brain regions underlying this effect were located in the insula, middle frontal gyrus and middle temporal gyrus, and are similar to those reported in previous studies investigating responses to changes in food nutritional content. In contrast, during a later stage (230-270ms), GFP was maximal for the 'ideal' relative to the 'non-ideal' portion sizes. Greater neural source activity to 'ideal' vs. 'non-ideal' portion sizes was observed in the inferior parietal lobule, superior temporal gyrus and mid-posterior cingulate gyrus. Collectively, our results provide evidence that several brain regions involved in attention and adaptive behavior track 'ideal' meal portion sizes as early as 230ms during visual encounter. That is, responses do not show an increase paralleling the amount of food viewed (and, in extension, the amount of reward), but are shaped by regulatory mechanisms.
Resumo:
La stimulation cérébrale profonde (SCP) nécessite l'implantation chirurgicale d'un système comprenant électrodes cérébrales et boîtier(s) de stimulation. Les noyaux cérébraux visés par la méthodologie stéréotaxique d'implantation doivent être visualisés au mieux par une imagerie à haute résolution. La procédure chirurgicale d'implantation des électrodes se fait si possible en anesthésie locale pour faire des mesures électro-physiologiques et tester en peropératoire l'effet de la stimulation, afin d'optimiser la position de l'électrode définitive. Dans un deuxième temps, le ou les générateur(s) d'impulsions sont implantés en anesthésie générale. La SCP pour les mouvements anormaux a une très bonne efficacité et un risque de complications graves faible quoique non nul. Les complications liées au matériel sont les plus fréquentes. Deep brain stimulation (DBS) requires the surgical implantation of a system including brain electrodes and impulsion generator(s). The nuclei targeted by the stereotaxic implantation methodology have to be visualized at best by high resolution imaging. The surgical procedure for implanting the electrodes is performed if possible under local anaesthesia to make electro-physiological measurements and to test intra-operatively the effect of the stimulation, in order to optimize the position of the definitive electrode. In a second step, the impulsion generator(s) are implanted under general anaesthesia. DBS for movement disorders has a very good efficacy and a low albeit non-zero risk of serious complications. Complications related to the material are the most common.
Resumo:
Mountain regions worldwide are particularly sensitive to on-going climate change. Specifically in the Alps in Switzerland, the temperature has increased twice as fast than in the rest of the Northern hemisphere. Water temperature closely follows the annual air temperature cycle, severely impacting streams and freshwater ecosystems. In the last 20 years, brown trout (Salmo trutta L) catch has declined by approximately 40-50% in many rivers in Switzerland. Increasing water temperature has been suggested as one of the most likely cause of this decline. Temperature has a direct effect on trout population dynamics through developmental and disease control but can also indirectly impact dynamics via food-web interactions such as resource availability. We developed a spatially explicit modelling framework that allows spatial and temporal projections of trout biomass using the Aare river catchment as a model system, in order to assess the spatial and seasonal patterns of trout biomass variation. Given that biomass has a seasonal variation depending on trout life history stage, we developed seasonal biomass variation models for three periods of the year (Autumn-Winter, Spring and Summer). Because stream water temperature is a critical parameter for brown trout development, we first calibrated a model to predict water temperature as a function of air temperature to be able to further apply climate change scenarios. We then built a model of trout biomass variation by linking water temperature to trout biomass measurements collected by electro-fishing in 21 stations from 2009 to 2011. The different modelling components of our framework had overall a good predictive ability and we could show a seasonal effect of water temperature affecting trout biomass variation. Our statistical framework uses a minimum set of input variables that make it easily transferable to other study areas or fish species but could be improved by including effects of the biotic environment and the evolution of demographical parameters over time. However, our framework still remains informative to spatially highlight where potential changes of water temperature could affect trout biomass. (C) 2015 Elsevier B.V. All rights reserved.-