19 resultados para Electric field simulations
Resumo:
In this work we analyze how patchy distributions of CO2 and brine within sand reservoirs may lead to significant attenuation and velocity dispersion effects, which in turn may have a profound impact on surface seismic data. The ultimate goal of this paper is to contribute to the understanding of these processes within the framework of the seismic monitoring of CO2 sequestration, a key strategy to mitigate global warming. We first carry out a Monte Carlo analysis to study the statistical behavior of attenuation and velocity dispersion of compressional waves traveling through rocks with properties similar to those at the Utsira Sand, Sleipner field, containing quasi-fractal patchy distributions of CO2 and brine. These results show that the mean patch size and CO2 saturation play key roles in the observed wave-induced fluid flow effects. The latter can be remarkably important when CO2 concentrations are low and mean patch sizes are relatively large. To analyze these effects on the corresponding surface seismic data, we perform numerical simulations of wave propagation considering reservoir models and CO2 accumulation patterns similar to the CO2 injection site in the Sleipner field. These numerical experiments suggest that wave-induced fluid flow effects may produce changes in the reservoir's seismic response, modifying significantly the main seismic attributes usually employed in the characterization of these environments. Consequently, the determination of the nature of the fluid distributions as well as the proper modeling of the seismic data constitute important aspects that should not be ignored in the seismic monitoring of CO2 sequestration problems.
Resumo:
Geophysical techniques can help to bridge the inherent gap with regard to spatial resolution and the range of coverage that plagues classical hydrological methods. This has lead to the emergence of the new and rapidly growing field of hydrogeophysics. Given the differing sensitivities of various geophysical techniques to hydrologically relevant parameters and their inherent trade-off between resolution and range the fundamental usefulness of multi-method hydrogeophysical surveys for reducing uncertainties in data analysis and interpretation is widely accepted. A major challenge arising from such endeavors is the quantitative integration of the resulting vast and diverse database in order to obtain a unified model of the probed subsurface region that is internally consistent with all available data. To address this problem, we have developed a strategy towards hydrogeophysical data integration based on Monte-Carlo-type conditional stochastic simulation that we consider to be particularly suitable for local-scale studies characterized by high-resolution and high-quality datasets. Monte-Carlo-based optimization techniques are flexible and versatile, allow for accounting for a wide variety of data and constraints of differing resolution and hardness and thus have the potential of providing, in a geostatistical sense, highly detailed and realistic models of the pertinent target parameter distributions. Compared to more conventional approaches of this kind, our approach provides significant advancements in the way that the larger-scale deterministic information resolved by the hydrogeophysical data can be accounted for, which represents an inherently problematic, and as of yet unresolved, aspect of Monte-Carlo-type conditional simulation techniques. We present the results of applying our algorithm to the integration of porosity log and tomographic crosshole georadar data to generate stochastic realizations of the local-scale porosity structure. Our procedure is first tested on pertinent synthetic data and then applied to corresponding field data collected at the Boise Hydrogeophysical Research Site near Boise, Idaho, USA.
Resumo:
Rough a global coarse problem. Although these techniques are usually employed for problems in which the fine-scale processes are described by Darcy's law, they can also be applied to pore-scale simulations and used as a mathematical framework for hybrid methods that couples a Darcy and pore scales. In this work, we consider a pore-scale description of fine-scale processes. The Navier-Stokes equations are numerically solved in the pore geometry to compute the velocity field and obtain generalized permeabilities. In the case of two-phase flow, the dynamics of the phase interface is described by the volume of fluid method with the continuum surface force model. The MsFV method is employed to construct an algorithm that couples a Darcy macro-scale description with a pore-scale description at the fine scale. The hybrid simulations results presented are in good agreement with the fine-scale reference solutions. As the reconstruction of the fine-scale details can be done adaptively, the presented method offers a flexible framework for hybrid modeling.
Resumo:
PURPOSE: At high magnetic field strengths (B0 ≥ 3 T), the shorter radiofrequency wavelength produces an inhomogeneous distribution of the transmit magnetic field. This can lead to variable contrast across the brain which is particularly pronounced in T2 -weighted imaging that requires multiple radiofrequency pulses. To obtain T2 -weighted images with uniform contrast throughout the whole brain at 7 T, short (2-3 ms) 3D tailored radiofrequency pulses (kT -points) were integrated into a 3D variable flip angle turbo spin echo sequence. METHODS: The excitation and refocusing "hard" pulses of a variable flip angle turbo spin echo sequence were replaced with kT -point pulses. Spatially resolved extended phase graph simulations and in vivo acquisitions at 7 T, utilizing both single channel and parallel-transmit systems, were used to test different kT -point configurations. RESULTS: Simulations indicated that an extended optimized k-space trajectory ensured a more homogeneous signal throughout images. In vivo experiments showed that high quality T2 -weighted brain images with uniform signal and contrast were obtained at 7 T by using the proposed methodology. CONCLUSION: This work demonstrates that T2 -weighted images devoid of artifacts resulting from B1 (+) inhomogeneity can be obtained at high field through the optimization of extended kT -point pulses. Magn Reson Med 71:1478-1488, 2014. © 2013 Wiley Periodicals, Inc.