82 resultados para EXACT S-MATRIX
Resumo:
The mechanical behaviour of ectodermal cells in the area opaca and the supracellular organization of fibronectin in the adjacent extracellular matrix were studied in whole chick blastoderms developing in vitro. The pattern of spontaneous mechanical activity and its modification by immunoglobulins against fibronectin were determined using a real-time image-analysis system. The pattern of fibronectin was studied using immunocytochemical techniques. It was found that the ectodermal cells in the area opaca actively develop a radially oriented contraction, which leads to a distension of the area pellucida from which the embryo develops. Abnormally increased tension resulted in perturbations of gastrulation and neurulation. An optimized mechanical equilibrium within the blastoderm seems to be necessary for normal development. Anti-fibronectin antibodies applied to the basal side of the blastoderm led rapidly and reversibly to an increase of tension in the contracted cells. This observation indicates that modifications of the extracellular matrix can be transmitted to cytoskeletal elements within adjacent cells. The extracellular matrix of the area opaca contains fibronectin arranged in radially oriented fibrils. This orientation corresponds to the direction of migration of the mesodermal cells. Interestingly, the radial pattern of fibronectin is found in the regions where the ectodermal cells are contracted and develop radially oriented forces. This observation suggests that the supracellular assembly of the extracellular materials could be influenced by the mechanical activity of adjacent cells. Possible modulations of the supracellular organization of extracellular matrix by other factors, e.g. diffusible metabolites, is also discussed. The presence of characteristically organized extracellular matrix components, of spatially differentiated cell activities and of reciprocal interactions between them makes the young chick blastoderm an excellent system for physiological studies of the coordinated cellular activities that lead to changes in form, complexity and function.
Resumo:
Cell invasion targets specific tissues in physiological placental implantation and pathological metastasis, which raises questions about how this process is controlled. We compare dermis and endometrium capacities to support trophoblast invasion, using matching sets of human primary fibroblasts in a coculture assay with human placental explants. Substituting endometrium, the natural trophoblast target, with dermis dramatically reduces trophoblast interstitial invasion. Our data reveal that endometrium expresses a higher rate of the fibronectin (FN) extra type III domain A+ (EDA+) splicing isoform, which displays stronger matrix incorporation capacity. We demonstrate that the high FN content of the endometrium matrix, and not specifically the EDA domain, supports trophoblast invasion by showing that forced incorporation of plasma FN (EDA-) promotes efficient trophoblast invasion. We further show that the serine/arginine-rich protein serine/arginine-rich splicing factor 1 (SRSF1) is more highly expressed in endometrium and, using RNA interference, that it is involved in the higher EDA exon inclusion rate in endometrium. Our data therefore show a mechanism by which tissues can be distinguished, for their capacity to support invasion, by their different rates of EDA inclusion, linked to their SRSF1 protein levels. In the broader context of cancer pathology, the results suggest that SRSF1 might play a central role not only in the tumor cells, but also in the surrounding stroma.
Resumo:
Neutrality tests in quantitative genetics provide a statistical framework for the detection of selection on polygenic traits in wild populations. However, the existing method based on comparisons of divergence at neutral markers and quantitative traits (Q(st)-F(st)) suffers from several limitations that hinder a clear interpretation of the results with typical empirical designs. In this article, we propose a multivariate extension of this neutrality test based on empirical estimates of the among-populations (D) and within-populations (G) covariance matrices by MANOVA. A simple pattern is expected under neutrality: D = 2F(st)/(1 - F(st))G, so that neutrality implies both proportionality of the two matrices and a specific value of the proportionality coefficient. This pattern is tested using Flury's framework for matrix comparison [common principal-component (CPC) analysis], a well-known tool in G matrix evolution studies. We show the importance of using a Bartlett adjustment of the test for the small sample sizes typically found in empirical studies. We propose a dual test: (i) that the proportionality coefficient is not different from its neutral expectation [2F(st)/(1 - F(st))] and (ii) that the MANOVA estimates of mean square matrices between and among populations are proportional. These two tests combined provide a more stringent test for neutrality than the classic Q(st)-F(st) comparison and avoid several statistical problems. Extensive simulations of realistic empirical designs suggest that these tests correctly detect the expected pattern under neutrality and have enough power to efficiently detect mild to strong selection (homogeneous, heterogeneous, or mixed) when it is occurring on a set of traits. This method also provides a rigorous and quantitative framework for disentangling the effects of different selection regimes and of drift on the evolution of the G matrix. We discuss practical requirements for the proper application of our test in empirical studies and potential extensions.
Resumo:
The in situ nuclear matrix was obtained from HeLa cells. After permeabilization with nonionic detergent, the resulting structures were incubated for 1 h at 37 degrees C to determine whether or not such an incubation might result in the redistribution of nuclear polypeptides which resisted extraction with buffers of high-ionic strength (1.6 M NaCl or 0.25 M (NH4)2SO4 as well as DNase I digestion. Using indirect immunofluorescence experiments and monoclonal antibodies we show that heating to 37 degrees C changes the distribution of a 160 kDa protein previously shown to be a component of the inner matrix network. On the other hand, a 125 kDa polypeptide was not affected at all by the incubation. Our results clearly indicate that the inclusion of a 37 degrees C incubation (for example during digestion with DNase I) in the protocol to obtain the in situ nuclear matrix can result in the formation of in vitro artifacts.
Resumo:
Scaffold or matrix attachment region (S/MAR) genetic elements have previously been proposed to insulate transgenes from repressive effects linked to their site of integration within the host cell genome. We have evaluated their use in various stable transfection settings to increase the production of recombinant proteins such as monoclonal antibodies from Chinese hamster ovary (CHO) cell lines. Using the green fluorescent protein coding sequence, we show that S/MAR elements mediate a dual effect on the population of transfected cells. First, S/MAR elements almost fully abolish the occurrence of cell clones that express little transgene that may result from transgene integration in an unfavorable chromosomal environment. Second, they increase the overall expression of the transgene over the whole range of expression levels, allowing the detection of cells with significantly higher levels of transgene expression. An optimal setting was identified as the addition of a S/MAR element both in cis (on the transgene expression vector) and in trans (co-transfected on a separate plasmid). When used to express immunoglobulins, the S/MAR element enabled cell clones with high and stable levels of expression to be isolated following the analysis of a few cell lines generated without transgene amplification procedures.
Resumo:
The multiscale finite volume (MsFV) method has been developed to efficiently solve large heterogeneous problems (elliptic or parabolic); it is usually employed for pressure equations and delivers conservative flux fields to be used in transport problems. The method essentially relies on the hypothesis that the (fine-scale) problem can be reasonably described by a set of local solutions coupled by a conservative global (coarse-scale) problem. In most cases, the boundary conditions assigned for the local problems are satisfactory and the approximate conservative fluxes provided by the method are accurate. In numerically challenging cases, however, a more accurate localization is required to obtain a good approximation of the fine-scale solution. In this paper we develop a procedure to iteratively improve the boundary conditions of the local problems. The algorithm relies on the data structure of the MsFV method and employs a Krylov-subspace projection method to obtain an unconditionally stable scheme and accelerate convergence. Two variants are considered: in the first, only the MsFV operator is used; in the second, the MsFV operator is combined in a two-step method with an operator derived from the problem solved to construct the conservative flux field. The resulting iterative MsFV algorithms allow arbitrary reduction of the solution error without compromising the construction of a conservative flux field, which is guaranteed at any iteration. Since it converges to the exact solution, the method can be regarded as a linear solver. In this context, the schemes proposed here can be viewed as preconditioned versions of the Generalized Minimal Residual method (GMRES), with a very peculiar characteristic that the residual on the coarse grid is zero at any iteration (thus conservative fluxes can be obtained).
Resumo:
Effective empirical treatment is of paramount importance to improve the outcome of patients with Staphylococcus aureus bacteraemia. We aimed to evaluate a PCR-based rapid diagnosis of methicillin resistance (GeneXpert MRSA) after early detection of S. aureus bacteraemia using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Patients with a first episode of S. aureus bacteraemia identified using MALDI-TOF MS were randomized in a prospective interventional open study between October 2010 and August 2012. In the control group, antibiotic susceptibility testing was performed after MALDI-TOF MS identification on blood culture pellets. In the intervention group, a GeneXpert MRSA was performed after S. aureus identification. The primary outcome was the performance of GeneXpert MRSA directly on blood cultures. We then assessed the impact of early diagnosis of methicillin resistance on the empirical treatment. In all, 197 episodes of S. aureus bacteraemia were included in the study, of which 106 were included in the intervention group. Median time from MALDI-TOF MS identification to GeneXpert MRSA result was 97 min (range 25-250). Detection of methicillin resistance using GeneXpert MRSA had a sensitivity of 99% and a specificity of 100%. There was less unnecessary coverage of MRSA in the intervention group (17.1% versus 29.2%, p 0.09). GeneXpert MRSA was highly reliable in diagnosing methicillin resistance when performed directly on positive blood cultures. This could help to avoid unnecessary prescriptions of anti-MRSA agents and promote the introduction of earlier adequate coverage in unsuspected cases.
Resumo:
Since the first reports of induction of adipose-derived stem cells (ASC) into neuronal and glial cell phenotypes, expectations have increased regarding their use in tissue engineering applications for nerve repair. Cell adhesion to extracellular matrix (ECM) is a basic feature of survival, differentiation, and migration of Schwann cells (SC) during nerve regeneration, and fibronectin and laminin are two key molecules of this process. Interaction between ECM and SC-like differentiated ASC (dASC) could potentially improve the neurotrophic potential of the stem cells. We have investigated the effect of ECM molecules on SC-like dASC in terms of proliferation, adhesion, and cell viability. Fibronectin and laminin did not affect the proliferation of dASC when compared with cell adherent tissue culture plastic, but significantly improved viability and cell attachment when dASC were exposed to apoptotic conditions. To assess the influence of the ECM molecules on dASC neurotrophic activity, dASC were seeded onto ECM-coated culture inserts suspended above dorsal root ganglia (DRG) sensory neurons. Neurite outgrowth of DRG neurons was enhanced when dASC were seeded on fibronectin and laminin when compared with controls. When DRG neurons and dASC were in direct contact on the various surfaces there was significantly enhanced neurite outgrowth and coculture with laminin-conditioned dASC produced the longest neurites. Compared with primary SCs, dASC grown on laminin produced similar levels of neurite outgrowth in the culture insert experiments but neurite length was shorter in the direct contact groups. Anti β1 integrin blocking antibody could inhibit baseline and dASC evoked neurite elongation but had no effect on outgrowth mediated by laminin-conditioned dASC. ECM molecules had no effect on the levels of nerve growth factor and brain-derived neurotrophic factor secretion from dASC. The results of the study suggest that ECM molecules can significantly improve the potential of dASC for nerve regeneration.
Resumo:
The metalloprotease meprin has been implicated in tissue remodelling due to its capability to degrade extracellular matrix components. Here, we investigated the susceptibility of tenascin-C to cleavage by meprin beta and the functional properties of its proteolytic fragments. A set of monoclonal antibodies against chicken and human tenascin-C allowed the mapping of proteolytic fragments generated by meprin beta. In chicken tenascin-C, meprin beta processed all three major splicing variants by removal of 10 kDa N-terminal and 38 kDa C-terminal peptides, leaving a large central part of subunits intact. IN similar cleavage pattern was found for large human tenascin-C variant where two N-terminal peptides (10 or 15 kDa) and two C-terminal fragments (40 and 55 kDa) were removed from the intact subunit. N-terminal sequencing revealed the exact amino acid positions of cleavage sites. In both chicken and human tenascin-C N-terminal cleavages occurred just before and/or after the heptad repeats involved in subunit oligomerization. In the human protein, an additional cleavage site was identified in the alternative fibronectin type III repeat D. Whereas all these sites are known to be attacked by several other proteases, a unique cleavage by meprin beta was located to the 7th constant fibronectin type III repeat in both chicken and human tenascin-C, thereby removing the C-terminal domain involved in its anti-adhesive activity. In cell adhesion assays meprin beta-digested human tenascin-C was not able to interfere with fibronectin-mediated cell spreading, confirming cleavage in the anti-adhesive domain. Whereas the expression of meprin beta and tenascin-C does not overlap in normal colon tissue, inflamed lesions of the mucosa from patients with Crohn's disease exhibited many meprin beta-positive leukocytes in regions where tenascin-C was strongly induced. Our data indicate that, at least under pathological conditions, meprin beta might attack specific functional sites in tenascin-C that are important for its oligomerization and anti-adhesive activity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
By using both conventional and confocal laser scanning microscopy with three monoclonal antibodies recognizing nuclear matrix proteins we have investigated by means of indirect fluorescence whether an incubation of isolated nuclei at the physiological temperature of 37 degrees C induces a redistribution of nuclear components in human K562 erythroleukemia cells. Upon incubation of isolated nuclei for 45 min at 37 degrees C, we have found that two of the antibodies, directed against proteins of the inner matrix network (M(r) 125 and 160 kDa), gave a fluorescent pattern different from that observed in permeabilized cells. By contrast, the fluorescent pattern did not change if nuclei were kept at 0 degrees C. The difference was more marked in case of the 160-kDa polypeptide. The fluorescent pattern detected by the third antibody, which recognizes the 180-kDa nucleolar isoform of DNA topoisomerase II, was unaffected by heat exposure of isolated nuclei. When isolated nuclear matrices prepared from heat-stabilized nuclei were stained by means of the same three antibodies, it was possible to see that the distribution of the 160-kDa matrix protein no longer corresponded to that observable in permeabilized cells, whereas the fluorescent pattern given by the antibody to the 125-kDa polypeptide resembled that detectable in permeabilized cells. The 180-kDa isoform of topoisomerase II was still present in the matrix nucleolar remnants. We conclude that a 37 degrees C incubation of isolated nuclei induces a redistribution of some nuclear matrix antigens and cannot prevent the rearrangement in the spatial organization of one of these antigens that takes place during matrix isolation in human erythroleukemia cells. The practical relevance of these findings is discussed.
Resumo:
Objectives: Polychlorinated biphenyls (PCBs) are considered probable human carcinogens by the International Agency for Research on Cancer and one congener, PCB126, has been rated as a known human carcinogen. A period-specific job exposure matrix (JEM) was developed for former PCB-exposed capacitor manufacturing workers (n=12,605) (1938-1977). Methods: A detailed exposure assessment for this plant was based on a number of exposure determinants (proximity, degree of contact with PCBs, temperature, ventilation, process control, job mobility). The intensity and frequency of PCB exposures by job for both inhalation and dermal exposures, and additional chemical exposures were reviewed. The JEM was developed in nine steps: (1) all unique jobs (n=1,684) were assessed using (2) defined PCB exposure determinants; (3) the exposure determinants were used to develop exposure profiles; (4) similar exposure profiles were combined into categories having similar PCB exposures; (5) qualitative intensity (high-medium-low-baseline) and frequency (continuous-intermittent) ratings were developed, and (6) used to qualitatively rate inhalation and dermal exposure separately for each category; (7) quantitative intensity ratings based on available air concentrations were developed for inhalation and dermal exposures based on equal importance of both routes of exposure; (8) adjustments were made for overall exposure, and (9) for each category the product of intensity and frequency was calculated, and exposure in the earlier era was weighted. Results: A period-specific JEM modified for two eras of stable PCB exposure conditions. Conclusions: These exposure estimates, derived from a systematic and rigorous use of the exposure determinant data, lead to cumulative PCB exposure-response relationships in the epidemiological cancer mortality and incidence studies of this cohort. [Authors]
Exact asymptotics and limit theorems for supremum of stationary chi-processes over a random interval
Resumo:
The two well-described osteolysis syndromes associated with matrix metalloproteinase-2 deficiency and mutations in the metalloproteinase-2 gene are Torg-Winchester syndrome and nodulosis-arthropathy-osteolysis variant. They are characterized by carpal-tarsal destruction, subcutaneous nodules, and generalized osteoporosis and show autosomal recessive inheritance. Herein, we report two siblings affected with a novel mutation in matrix metalloproteinase 2 gene and discuss their clinical and radiographic findings.